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In this paper we report an experimental realization of an ancilla-free 1→2 phase-covariant quantum cloner.
The cloner is realized by interfering a linearly polarized photon, which we wish to clone with a circularly
polarized photon at a beam splitter. The two-photon effect can be understood in light of Hong-Ou-Mandel
interference. The fidelity of the cloner was measured as 0.829±0.008 for the 0/90 basis and 0.835±0.006 for
the 45/135 basis, which is in good agreement with the theoretical prediction of 5/6 fidelity. The experimental
scheme is straightforward and has a high cloning success rate.
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In 1982 Wooters and Zurek[1] proposed the “no cloning”
theorem in order to solve the interesting and searching ques-
tion of superluminal communication posed by Herbert[2]
earlier that same year. The field of quantum cloning has since
experienced immense interest and growth, owing mostly to
the fact that the theorem should be more accurately labelled
the “no-perfect-cloning” theorem. The inability to perfectly
clone initiated the development of quantum cryptography
[3–6], and it has even been shown to be useful in quantum
computing[7]. Theoretical aspects of quantum cloning have
been studied for some time now; first in discrete[8–11], then
recently in continuous variable[12,13] quantum systems.
Success in experimental aspects and realizations of cloning,
however, have only come relatively recently[14–17].

Buzek and Hillery[9] proposed the first theoretical model
of a universal quantum cloning machine(UQCM). In their
original work, the universal quantum cloning machine takes
a two-state particle in any arbitrary, unknown state and cop-
ies all possible states equally well. In other words, the fidel-
ity (a measure of the quality of the copying procedure) is
independent of the unknown input state. The best possible
copying, or optimal fidelity, was derived by Buzek and Hil-
lery to be 5/6 for a 1 to 2copying procedure. This was later
derived via constructive proof by Brusset al. [18].

In pursuing the universal cloner, Buzek and Hillery dis-
covered that it was necessary to have an additional “ancilla
bit” in order to realize the universal cloner. This ancilla bit is
sometimes referred to as the “machine” state or anticlone in
the literature. However, in many instances, such as optimal
eavesdropping on a Bennett-Brassard 1984 protocol(BB84)
cryptochannel, it is only necessary to clone arbitrarylinearly
polarized states instead of any possible polarized states(e.g.,
any elliptically polarized state). Restricting the cloning to
only linearly polarized states dramatically simplifies the
cloning requirements. As we show experimentally, cloning
only linearly polarized photons does not require an ancilla
bit. This type of restrictive cloning is referred to as phase
covariant cloning[19–25]. On a more formal level, phase
covariant cloning is the study of restricted copying in which
the symmetric cloning only occurs on a great circle of the
Bloch sphere. In this work, the great circle is the linear po-
larization equator of the Bloch sphere. Further, the cloner
presented here is nonperturbative, which ultimately means
that the cloning procedure will occur with much higher rep-
etition rate than in previous experiments.

In this Rapid Communication, the phase covariant cloner
is achieved by interfering a linearly polarized photon we
wish to clone with a circularly polarized photon at a beam
splitter (as seen in Fig. 1). From a practical point of view, a
circularly polarized photon has a 50% chance of being trans-
mitted through(or absorbed in) a polarizerregardless of the
orientation of the polarizer. This means that there is no pre-
ferred orientation of a circularly polarized photon in a lin-
early polarized basis. With this simple fact, interfering a lin-
early polarized photon with a circularly polarized photon
then causes a “stimulated” two photon effect when both pho-
tons are measured with the same linear polarization orienta-
tion and in the same spatio-temporal mode and a “noise”-like
term when the photons are measured with orthogonal linear
polarizations. The cloner interference can be understood in
light of the famous Hong-Ou-Mandel two-photon interfer-
ence effect[26]. Interestingly, no additional ancilla photon is
needed to achieve the same fidelity as the UQCM for the
phase-covariant conditions of this cloner.

Recall that if two bosons are made indistinguishable in
every quantum variable, they occupy the same quantum state
and get a corresponding boson mode occupation enhance-
ment. Therefore, if two photons(which are bosons) are made
to be spatially and temporally indistinguishable at a beam
splitter while having the same spectral and polarization ori-
entation characteristics, they must both leave the same output
port of the beam splitter. This two-photon behavior has been
labelled Hong-Ou-Mandel interference[26] and has played a

FIG. 1. A linearly polarized photon in mode A interferes with a
circularly polarized photon in mode B at a beam splitter. Phase-
covariant cloning occurs when both photons are measured in the
same output port of the beam splitter.
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vital role in many remarkable experiments in quantum infor-
mation such as teleportation[27], and dense coding[28].
However, the two photons will not interfere if they have
orthogonal polarizations, even if all the other characteristics
are the same(e.g., spectral, spatial, and temporal) because
they are distinguishable. Therefore, the two photons will be-
have independently at the beam splitter.

Consider the outcome when a circularly polarized photon
interferes with a linearly polarized photon. For the moment,
we are only interested in one output port of the 50-50 beam
splitter. Also, we will assume that the two photons are dis-
tinguishable in some quantum variable such as temporal
mode overlap. In other words, the photons arrive at the beam
splitter at different times and are therefore distinguishable.
Lastly, assume that the linearly polarized photon in mode A
is horizontally polarized and that the photons will be mea-
sured in the horizontal–vertical basis. The wave function for
the linearly polarized photon in the output port isuCl1
= u1,0l1, where the subscript 1 labels the linearly polarized
photon and the ketu1,0l1 denotes that there is one horizon-
tally polarized photon and zero vertically polarized photons.
As a note, we will not worry about the normalization of the
wave function. The wave function in the same output port for
the circularly polarized photon is given byuCl2= u1,0l2
+ i u0,1l2. Without worrying about normalization, the circu-
larly polarized wave function denotes that the circularly po-
larized photon can be decomposed into an equal amplitude
superposition with both a horizontal and vertical component.
The two-photon wave function is then given by the tensor
product of the two individual wave functions

uCl = uCl1 ^ uCl2 = u1,0l1 ^ su1,0l2 + i u0,1l2d. s1d

As it is, this two-photon wave function is not very inter-
esting. However, if one applies a quantum eraser to erase any
distinguishable space-time information between the two pho-
tons in the same output port, the two-photon wave function
then becomes

uCl = Î2u2,0l + i u1,1l, s2d

where it should be noted that theÎ2 is now in front of the
first ket. This factor is a result of the boson mode enhance-
ment and leads to the stimulated enhancement needed for
cloning. The other ket is the noise term which has an analog
to spontaneous emission in an orthogonal mode of a linear
amplifier. If on the other hand, the linearly polarized photon
(to be cloned) is vertically polarized, the two-photon wave
function is given by

uCl = u1,1l + iÎ2u0,2l. s3d

Using the sum-frequency technique proposed by Simonet al.
[14,29] the fidelity is computed by adding all the contribu-
tions with the same polarization as the incoming linearly
polarized photon and dividing by all the contributions. From
the wavefunction it can be seen that there is twice the prob-
ability of measuring both photons in the same polarization
mode as to measure one photon in each polarization mode.
The fidelity is then computed to be

F =
2 3 2 + 13 1

2 3 2 + 13 2
=

5

6
, s4d

which is the same as the optimal universal cloning fidelity.
As asserted, the cloning should be independent of the lin-

ear polarization of the incoming photon. Suppose the incom-
ing linearly polarized photon is horizontal in anew primed
basis(a basis which can be achieved by rotating the linear
analyzers). The wave function is written asuCl18= u1,0l18,
where the8 denotes that the wave function is written in the
primed basis. The important aspect of this phase-covariant
cloner is that the circularly polarized photon can be written
as uCl2= u1,0l28+ i u0,1l28 in the new basis. Thus, applying the
quantum eraser, the two-photon wave function in the primed
basis is given by

kCl = Î2u2,0l8 + i u1,1l8, s5d

which yields the same cloning fidelity as the unprimed basis.
We arrive at the very important conclusion that the cloning is
independent of the linear polarization basis.

A more careful analysis of the input-output relations of
the beam splitter reveal that ideally the probability that both
photons will be measured in the same output port is 75%. It
should be kept in mind that due to symmetry cloning occurs
with equal probability in both exit ports of the beam splitter.
This statistically means 3/4 of the time a cloning event will
occur if a circularly polarized photon enters one input port at
the same time that a linearly polarized photon enters the
other input port of a 50-50 beam splitter. Thus, two-photon
postselection is needed to observe the cloning. Ideally, this
implies that single photons on demand can be cloned with
single photons on demand with high success probability.
This very high success rate can be contrasted with stimulated
emission in a crystal, where the perturbative(meaning that
there is a small probability that an entangled pair will be
created when a signal photon enters the crystal) three-photon
postselection success is very low. However, this latter system
could be improved dramatically if one and only one pair of
entangled photons can be created on demand.

We report on an experimental demonstration of the phase
covariant cloner using collinear type-II parametric down-
conversion(a schematic of the experiment is shown in Fig.
2). The spontaneously emitted pair of photons, having or-
thogonal polarization, are separated at a polarizing beam
splitter. The signal photon(the linearly polarized photon) is
rotated into its linear polarization state using a half wave
plate. The cloning photon(the circularly polarized photon) is
made circularly polarized by a quarter wave plate. They are
then made to recombine at a 50-50 beam splitter.

The photons were generated by using a 390 nm laser
(Toptica TA 100 DL series 780 nm source driving the Toptica
series SG100 frequency doubling system) to pump a 2 mm
BBO crystal. The down–converted photons centered at
780 nm were then separated out from the 390 nm pump us-
ing a UV grade fused-silica prism. Interference filters of
10 nm bandwidth are used to increase the coherence length
of the downconverted photons to approximately 60 microns,
and to reduce background noise.

Owing to the symmetry of the 50-50 beam splitter, mea-
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surements were made in only one output port. The first ex-
periment was to insert a horizontally polarized photon to be
cloned. The two photon measurements are then horizontal-
horizontal(H-H) or horizontal-vertical(H-V). As can be seen
from the results in Fig. 3 we observe an enhancement in the
H-H polarized pairs when the path lengths are matched with-
out affecting the H-V pairs. The results were performed in
two different nonorthogonal bases to confirm that the cloner
works equally well in any linear basis. For any one basis, we
ideally expect the measured H-H coincidences to be twice
those of the H-V coincidences. However, long term laser
instability affected count rates in between measurement runs.
Even with this in mind, the qualitative information presented
in the two measurements is critical. Using a theoretical
Gaussian fit for the H-H correlations the coherence length
was estimated to be 75 microns, in good agreement with our
initial expectations.

We now calculate the fidelity of the cloning from the peak
and base values of the H-H coincidences. Examining the

statistics at the peak of the H-H coincidences, we get

F =
2RH-H + RH-V

2RH-H + 2RH-V
, s6d

whereRH-H is the rate of H-H coincidences, andRH-V is the
rate of H-V coincidences. Using this we get a fidelity of
0.829±0.008 for the 0/90 basis and 0.835±0.006 for the
45/135 basis, which is in good agreement with the 5/6 fi-
delity as predicted earlier in this paper. It should be noted
that to obtain the fidelity in Eq.(6), the data was normalized
by making the baselines equal. Owing to our inability to
measure two identical photons(temporal, spatial, spectral,
and polarization), beam splitter cascading[30] was required.
This leads to a lower baseline for the H-H coincidences than
the H-V coincidences. The baselines would have been the
same with a photon number resolving detector.

The HOM cloner represents a significant advance in clon-
ing success rate. For example, in the demonstration of the
UQCM via stimulated emission by Lamas-Linareset al. [16]
the cloning success rate was approximately 10−5. In the the
UQCM experiment, two major problems limited the success
rate. While the cloner we have reported here has a high clon-
ing success rate, there are still technological issues of con-
cern. First, the collection and detection efficiency of the pho-
tons is still quite low s<10%d. This could be greatly
improved with more efficient detectors and improved collec-
tion efficiency optics. One can envision a fiber based source
of single photons on demand, which would dramatically im-
prove the collection efficiency.

While it is unlikely that a HOM cloner will be a standard
tool in the quantum key distribution eavesdropping, it does
point out a potential weakness of only using two nonorthogo-
nal bases for key distribution. As Bruss showed, three mutu-
ally unbiased bases provide additional security for which the
HOM cloner is not symmetric[31]. Further, one can think of
a myriad of ways to thwart any cloning machine as an eaves-
dropping tool such as creating spectral or temporal jitter to
the signal photons.

FIG. 2. Schematic of the experimental setup. The down–
converted photons are separated at the first PBS. The photon from
arm A is circularly polarized when it is incident on the 50-50 beam
splitter. HOM interference occurs when the path lengths of arms A
and B are matched, leading to cloning of the linearly polarized
photon from arm B after postselection.

FIG. 3. The figures show the results of mea-
suring same port coincidences with respect to
path length mismatch for the four possible polar-
ization combinations. Thepositionaxes are only
for scale, and have a systematic offset of
,0.08 mm. Boson mode enhancement only oc-
curs in A and C where both photons have the
same polarizations, thus leading to the cloning
effect.
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Lastly, the fidelity of the HOM cloner is5/6=83.33%,
which is slightly smaller than the optimal predicted fidelity
of a phase covariant cloner of 85.4%. For example, Fiurasek
recently proposed an all-optical optimal cloner[22]. How-
ever, the experimental complexity is much greater and the
maximum success probability of a cloning event is only 1/3.
Thus, in our experiment fidelity is sacrificed at the expense
of higher cloning success rate and experimental simplicity.

We have demonstrated the first experimental ancilla-free
phase-covariant quantum cloner by restricting the cloning to
the linearly polarized photons(equator of the Bloch sphere).

The experimental results of the HOM cloner agree well with
theoretical predictions. Interestingly, the cloning device uses
only linear optics and interference. All previous demonstra-
tions have used seeded amplifiers(weak optical parametric
amplifier [16] or a fiber amplifier[17]) to demonstrate the
cloning effect.
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