

Measurements of pion production in eA with the CLAS detector

CLAS (CEBAF Large Acceptance Spectrometer)

- CEBAF(Continuous Electron Beam Accelerator Facility) at JLAB
- Up to 6 GeV e^{-} and γ beam (upgrading to 12 GeV).
- Hall B, CLAS detector
- Liquid and/or solid target with e^{-} and γ beam

EG2 experiment with CLAS

- 4 GeV, 5 GeV e^{-} beam
- 2 targets(liquid & solid) in the beam simultaneously in CLAS.
- [LD₂, LH] + [C, Fe, Pb, Sn, Al(2 thicknesses)]
- 5 GeV Beam + (D₂, C, Fe, Pb) used for this study.

GENIE with eA mode

- CLAS Components in 6 sectors
- Super-conducting toroidal magnet
- Drift chambers for particle tracking
- Cerenkov counters for e⁻ identification
- TOF Scintillators for particle identification
- EC for e^{-} identification

• v2.5.1 with $Q^2 > 0.5 GeV^2$ are used for this study.

 eA mode uses charged lepton cross sections from Rein-Sehgal and Bodek-Yang and includes small modifications to account for the probe charge in the hadronization model and resonance event generation. - Ref. AIP Conf. Proc. 1405, 21 (2011).

Event Selection and Cuts

• Event Sample

- Data : D_2 -C(1.1x10⁹), D_2 -Fe(2.2x10⁹), D_2 -Pb(1.5x10⁹) triggers $-MC: 4x(100x10^{6})$
- Event Selection : e^{-} and "at least one charged π "
- Variables for differential x-sections
- $-Q^{2}$ (1~5 GeV²), W (1~2.9 GeV)
- Choose the leading charged pion for pion variables.
- π charge, π momentum (0.1~4 GeV), π angle[w.r.t. beam

direction] $(5 \sim 55^{\circ})$ • y < 0.872 ($P_e > 0.64$ GeV) \leftarrow EC threshold for trigger • Fiducial Cut(depending on momentum and 2 angles)

Acceptance & Bin Migrations

- Multi-dimensional acceptance for (π charge)+4 variables.
- total $10(Q^2)x9(W)x2(Q_{\pi})x9(P_{\pi})x9(\theta_{\pi})]$ bins.
- For each variable, have ~10% bin migration.
- Use MC to correct for acceptance. This largely removes bin migration. Migration taken into account for statistical error calculation. (Ref. CLAS-Note 2004-03)

Radiative Corrections

- Externals_all (Ref. EG1-DVCS-TN-005)
- Calculate differential X-sections(W, Q^2) with/without QED

radiative effects in the process of inclusive electron scattering.

- It is designed for eg1-dvcs and used for eg1 & eg4.
- Contribution from (Quasi-)elastic parts are excluded.

Total X-sections

- Error analysis have not finished yet. Just for sanity check.
- Data [D₂/C/Fe/Pb]

7.14 / 36.9 / 145.7 / 412.6 (*nb*)

 Applying same cut as data for MC original and weighted by x-sections calculated from GENIE.

6.63 / 34.82 / 140.6 / 451.8 [-7 % / -6 % / -4 % / 10%] (*nb*)