
numflux etc...
 & geometric source terms

Updating a grid

AMR
● advance

– b4step – initializes grid if necessary and protects
pressure and density etc...

– src – updates domain with source terms

– step – calculates the physical fluxes and updates the
conserved quantities except at amr boundaries

● fixup – updates quantities at amr boudaries
● afterfixup_MHD

– computes_emf – calculates the emf's for CT update

– field_update – updates the cell centered B-fields and
energy.

step
● Step cycles through every ray in the grid and

updates each ray of cells
– numflux – calculates the numerical fluxes at the cell

interfaces for each ray (numFql & numFqr)

– updateq – applies those fluxes to update the cell
centered values along each ray

● UpdateFixups – stores the numerical fluxes that are
transverse to the edge of the domain.

● CoarseFineFlux – Prevents using fluxes when refined
fluxes will later be available.

numflux
● numflux only calls two main routines

– physflux – does the physics calculations requested by
numflux

– src1D – does a source integration on a ray of cells

● numflux does essentially three things:
– spatial interpolation of cell edges (method[2])

– time evolution of cell edges (method[4] & method[5])

– flux calculation at cell edges (method[6])

method(2)
● Spatial interpolation – All 5 interpolation schemes leave the cell centers in primitive

form and all but the Gudonov method leave the cell edges in conservative form. They
use the following requests to physflux:

● RequestPrimitive

● RequestConserved

● RequestEigenDecomposition (used only by CASE 2 below)

● Select Case Method(2)

– CASE 0: Gudonov method – no interpolation

– CASE 1: Linear interpolation on primitive variables

– CASE 2: Linear characteristic interpolation – uses the Roe-averaged eigen-
decomposition of the wave equation to interpolate each wave mode.

– CASE 3: Piecewise Parabolic Reconstruction of primitive fields

– CASE 4: Local Hyberbolic Harmonic Reconstruction of primitive fields

method(4)
● Time evolution – All of the different evolution schemes leave the edge values (q1DL

and q1DR) in conservative form. When method(5) /= 0, CASES 1, 3, & 4 call src1D on
the cell edges. All of the different cases use the following requests to physflux:

● RequestPrimitive

● RequestConserved

● RequestSidedEigenDecomposition (used by CASES 3 & 4 below)

● RequestFluxes

● RequestPredictor (used only by CASE 1, 3, & 4 for MHD)

● Select Case Method(4)

– CASE 0: Gudonov method – no interpolation

– CASE 1: Uses the reconstructed edge values to calculate predictor fluxes to update
the edge values. (Not a Riemann solve) (MUSCL-Hancock when used with
method(2)=1)

– CASE 2: 2-Step Runge-Kutta (implemented in advance)

– CASE 3: PPM Characteristic Tracing (should only be used with method(2)=3)

– CASE 4: Linear Characteristic Tracing

method(6)
● Flux Calculation – Solves the Riemann problem at the cell edges. Uses the following

requests to physflux:

● RequestFluxes

● RequestSpeeds

● RequestEigenDecomposition

● RequestHLLDFlux

● RequestSidedEigenDecomposition

● Select Case Method(6)

– CASE 0: Roe method

– CASE 1: Adapted Marquina flux formula

– CASE 2: Marquina flux formula

– CASE 3: HLLD solver

method(5)
● Source integration:

● RequestPrimitive

● RequestConserved

● RequestSidedEigenDecomposition (used by CASES 3 & 4 below)

● RequestFluxes

● RequestPredictor (used only by CASE 3 below)

● IF Method(4) == 2 and Method(5) != 0, then there is a source step, hydro step, source
step, hydro step. Otherwise ...

● Select Case Method(5)

– CASE 0: No source updating

– CASE 1: Calls src1D on the reconstructed edges and a full source step in afterfixup

– CASE 2: Does a half source update, reconstructs, does a src1D update on edge
values, updates the grid and calls another half source update. (Strang Splitting)

src
● source routine

calculates the various
source terms and the
jacobian matrix:

Sa=
dQa

dt

Jab=
dSa

dQb

Uniform Gravity

Q=[ , px , py , E]

S=[
0
0

�g
�gv y

]=[
0
0

�g
�g py

]
J=[

0 0 0 0
0 0 0 0
�g 0 0 0
0 0 �g 0

]

2.5D Geometric Source Terms

Q=[ , pr , pz, p , E]

S=
�1
r {

ur pr

ur
2�u

2 pr
2



ur uz =
pr pz



2ur u

2 pr p



ur [EPQ]
pr


[EPQ]

}=�1
r

F r[
0
v

2

r
0

�ur u

0
]

J=
�1
r {[

0 1 0 0 0
�pr

2 p
2

2

2 pr


0

�2p


0

�pr pz

2

pz



pr


0 0

�2pr p

2

2p


0

2pr


0

�pr

2 [EPQ]
EPQ


0 0

pr



] pr

 [
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

dP
d


dP
dpr

dP
dpz

dP
dp

dP
dE
]}

Geometric source terms
● We begin with some coordinates qi and the conservation equations in

vector form:

● Replacing derivatives with covariant
derivatives and replacing the pressure with a
2nd rank contravariant tensor introduces
geometric source terms:

∇⋅V =V ; i
i =

∂V i

∂qi
V kki

i

∇V =V ; j
i =

∂V i

∂q j
Vk kj

i

∇ P 
i
=P; j

ij

∂ 

∂ t
∇⋅u =0

∂ u 
∂ t

∇⋅u u ∇ P=0

∂ E
∂ t

∇⋅[u EP]=0

S = �uk kj
j

Spi
= �ui uk kj

j �u j ukkj
i �P gik  jk

j �P g jk  jk
i

SE = �EPukkj
j

Pij=P gij

P; j
ij =

∂gij P

∂q j P gim jm
j P g jm jm

i

● There are only three non-zero coefficients of
connection (Christoffel symbols)

● Plugging these into the source terms gives:

● Note:

Cylindrical Coordinates


r =�r  r 

 =
1
r

r
 =

1
r

�ur

r
+ 0

ur
2r + u

2 r

�uur

r
+

�2uur

r
0 + 0

�ur EP

r
+ 0

=
�F r

r
[

0
u

2 r
�2uur

r
0
0

]

gij=[1 0 0
0 r 2 0
0 0 1] gij=[

1 0 0

0
�1

r 2
0

0 0 1
]

P gik  jk
j P g jk  jk

i =0

Alternatively...
● Instead of storing the actual densities, store the

projected surface densities for each (r-z annulus)

z

r

⇒ r 
u⇒ r u

E⇒ r E
P⇒ r P
P

⇒

P


● Then source terms associated with the radial flux
go away...

Modified geometric source terms

● We can eliminate many of the source terms associated with the
advection of densities if we scale the densities of mass, momentum,
and energy by the metric scale factor

● And use the identity

● Then the source terms simplify to:

● Note also that AstroBear does this for the angular momentum in order
to store the magnitude of the angular momentum density.

g
1
2kj

j =
d g

1
2 

dqk

g
1
2=

d 

dq1dq2dq3...

S = 0

Spi
= �u j ukkj

i �P g jk  jk
i

SE = 0
[

0
u

2 r
�2uur

r
0
0

]
q  iAngMom=v instead of 

