numflux etc...

\& geometric source terms

Updating a grid

AMR

- advance
- b4step - initializes grid if necessary and protects pressure and density etc...
- src - updates domain with source terms
- step - calculates the physical fluxes and updates the conserved quantities except at amr boundaries
- fixup - updates quantities at amr boudaries
- afterfixup_MHD
- computes_emf - calculates the emf's for CT update
- field_update - updates the cell centered B-fields and energy.

SHOB

- Step cycles through every ray in the grid and updates each ray of cells
- numflux - calculates the numerical fluxes at the cell interfaces for each ray (numFql \& numFqr)
- updateq - applies those fluxes to update the cell centered values along each ray
- UpdateFixups - stores the numerical fluxes that are transverse to the edge of the domain.
- CoarseFineFlux - Prevents using fluxes when refined fluxes will later be available.

numflux

- numflux only calls two main routines
- physflux - does the physics calculations requested by numflux
- src1D - does a source integration on a ray of cells
- numflux does essentially three things:
- spatial interpolation of cell edges (method[2])
- time evolution of cell edges (method[4] \& method[5])
- flux calculation at cell edges (method[6])

method(2)

- Spatial interpolation - All 5 interpolation schemes leave the cell centers in primitive form and all but the Gudonov method leave the cell edges in conservative form. They use the following requests to physflux:
- RequestPrimitive
- RequestConserved
- RequestEigenDecomposition (used only by CASE 2 below)
- \quad Select Case Method(2)
- CASE 0: Gudonov method - no interpolation
- CASE 1: Linear interpolation on primitive variables
- CASE 2: Linear characteristic interpolation - uses the Roe-averaged eigendecomposition of the wave equation to interpolate each wave mode.
- CASE 3: Piecewise Parabolic Reconstruction of primitive fields
- CASE 4: Local Hyberbolic Harmonic Reconstruction of primitive fields

method(4)

- Time evolution - All of the different evolution schemes leave the edge values (q1DL and q1DR) in conservative form. When method(5) $/=0$, CASES $1,3, \& 4$ call src1D on the cell edges. All of the different cases use the following requests to physflux:
- RequestPrimitive
- RequestConserved
- RequestSidedEigenDecomposition (used by CASES $3 \& 4$ below)
- RequestFluxes
- RequestPredictor (used only by CASE $1,3, \& 4$ for MHD)
- Select Case Method(4)
- CASE 0: Gudonov method - no interpolation
- CASE 1: Uses the reconstructed edge values to calculate predictor fluxes to update the edge values. (Not a Riemann solve) (MUSCL-Hancock when used with method(2)=1)
- CASE 2: 2-Step Runge-Kutta (implemented in advance)
- CASE 3: PPM Characteristic Tracing (should only be used with method(2)=3)
- CASE 4: Linear Characteristic Tracing

method(6)

- Flux Calculation - Solves the Riemann problem at the cell edges. Uses the following requests to physflux:
- RequestFluxes
- RequestSpeeds
- RequestEigenDecomposition
- RequestHLLDFlux
- RequestSidedEigenDecomposition
- Select Case Method(6)
- CASE 0: Roe method
- CASE 1: Adapted Marquina flux formula
- CASE 2: Marquina flux formula
- CASE 3: HLLD solver

method(5)

- Source integration:
- RequestPrimitive
- RequestConserved
- RequestSidedEigenDecomposition (used by CASES $3 \& 4$ below)
- RequestFluxes
- RequestPredictor (used only by CASE 3 below)
- IF Method(4) == 2 and $\operatorname{Method}(5)!=0$, then there is a source step, hydro step, source step, hydro step. Otherwise ...
- Select Case Method(5)
- CASE 0: No source updating
- CASE 1: Calls src1D on the reconstructed edges and a full source step in afterfixup
- CASE 2: Does a half source update, reconstructs, does a src1D update on edge values, updates the grid and calls another half source update. (Strang Splitting)

SrC

- source routine calculates the various source terms and the jacobian matrix:

$$
\begin{aligned}
& S_{a}=\frac{d Q_{a}}{d t} \\
& J_{a b}=\frac{d S_{a}}{d Q_{b}}
\end{aligned}
$$

Uniform Gravity

$$
\begin{gathered}
Q=\left[\rho, p_{x}, p_{y}, E\right] \\
S=\left[\begin{array}{c}
0 \\
0 \\
-\rho g \\
-g \rho v_{y}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-g \rho \\
-g p_{y}
\end{array}\right] \\
J=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-g & 0 & 0 & 0 \\
0 & 0 & -g & 0
\end{array}\right]
\end{gathered}
$$

2.5D Geometric Source Terms

$$
\begin{gathered}
Q=\left[\rho, p_{r}, p_{z}, p_{\phi}, E\right] \\
S=\frac{-1}{r}\left(\begin{array}{cc}
\rho u_{r} & p_{r} \\
\rho u_{r}^{2}-\rho u_{\phi}^{2} & \frac{p_{r}^{2}}{\rho} \\
\rho u_{r} u_{z} & = \\
\frac{p_{r} p_{z}}{\rho} \\
2 \rho u_{r} u_{\phi} & \frac{2 p_{r} p_{\phi}}{\rho} \\
u_{r}[E+P(Q)] & \frac{p_{r}}{\rho}[E+P(Q)]
\end{array}\right)=\frac{-1}{r} F_{r}+\left[\begin{array}{c}
0 \\
\frac{v_{\phi}^{2}}{r} \\
0 \\
-\rho u_{r} u_{\phi} \\
0
\end{array}\right]
\end{gathered}
$$

$$
J=\frac{-1}{r}\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{-p_{r}^{2}+p_{\phi}^{2}}{\rho^{2}} & \frac{2 p_{r}}{\rho} & 0 & \frac{-2 \mathrm{p}_{\phi}}{\rho} & 0 \\
\frac{-p_{r} p_{z}}{\rho^{2}} & \frac{p_{z}}{\rho} & \frac{p_{r}}{\rho} & 0 & 0 \\
\frac{-2 p_{r} p_{\phi}}{\rho^{2}} & \frac{2 \mathrm{p}_{\phi}}{\rho} & 0 & \frac{2 p_{r}}{\rho} & 0 \\
\frac{-p_{r}}{\rho^{2}}[E+P(Q)] & \frac{E+P(Q)}{\rho} & 0 & 0 & \frac{p_{r}}{\rho}
\end{array}\right]+\frac{p_{r}}{\rho}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\frac{d P}{d} \rho & \frac{d P}{d p_{r}} & \frac{d P}{d p_{z}} & \frac{d P}{d p_{\phi}} & \frac{d P}{d E}
\end{array}\right]\right.
$$

Geometric source terms

- We begin with some coordinates q^{i} and the conservation equations in vector form:

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\frac{\partial(\rho \boldsymbol{u})}{\partial t}+\nabla \cdot(\rho \boldsymbol{u} \boldsymbol{u})+\nabla P=0 \\
\frac{\partial E}{\partial t}+\nabla \cdot[\boldsymbol{u}(E+P)]=0
\end{gathered}
$$

- Replacing derivatives with covariant

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{V}=V_{; i}^{i}=\frac{\partial V^{i}}{\partial q^{i}}+V^{k} \Gamma_{k i}^{i} \\
& \nabla \boldsymbol{V}=V_{; j}^{i}=\frac{\partial V^{i}}{\partial q^{j}}+V^{k} \Gamma_{k j}^{i}
\end{aligned}
$$

$$
(\nabla P)^{i}=P_{; j}^{i j}
$$

derivatives and replacing the pressure with a $2^{\text {nd }}$ rank contravariant tensor introduces geometric source terms:

$$
\begin{gathered}
P^{i j}=P g^{i j} \\
P_{i, j}^{i j}=\frac{\partial g^{i j} P}{\partial q^{j}}+P g^{i m} \Gamma_{j m}^{j}+P g^{j m} \Gamma_{j m}^{i}
\end{gathered}
$$

$$
\begin{array}{lc}
S_{\rho} & = \\
S_{p_{i}}= & -\rho u^{i} u^{k} \Gamma_{k j}^{j}-\rho u^{j} u^{k} \Gamma_{k j}^{i} \Gamma_{k j}^{j}-P g^{i k} \Gamma_{j k}^{j}-P g^{j k} \Gamma_{j k}^{i} \\
S_{E}= & -(E+P) u^{k} \Gamma_{k j}^{j}
\end{array}
$$

Cylindrical Coordinates

- There are only three non-zero coefficients of connection (Christoffel symbols)

$$
\begin{aligned}
& \text { onnection (Christoffel symbols) } \\
& \Gamma_{\phi \phi}^{r}=-r \quad \Gamma_{r \phi}^{\phi}=\frac{1}{r} \quad \Gamma_{\phi r}^{\phi}=\frac{1}{r}
\end{aligned} g_{i j}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & 1
\end{array}\right] \quad g^{i j}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{-1}{r^{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Plugging these into the source terms gives:

$$
\left[\begin{array}{ccc}
\frac{-\rho u_{r}}{r} & + & 0 \\
\rho u_{r}^{2} r & + & \rho u_{\phi}^{2} r \\
\frac{-\rho u_{\phi} u_{r}}{r} & + & \frac{-2 \rho u_{\phi} u_{r}}{r} \\
0 & + & 0 \\
\frac{-u_{r}(E+P)}{r} & + & 0
\end{array}\right]=\frac{-F_{r}}{r}+\left[\begin{array}{c}
0 \\
\rho u_{\phi}^{2} r \\
\frac{-2 \rho u_{\phi} u_{r}}{r} \\
0 \\
0
\end{array}\right]
$$

- Note: $P g^{i k} \Gamma_{j k}^{j}+P g^{j k} \Gamma_{j k}^{i}=0$

Alternatively...

- Instead of storing the actual densities, store the projected surface densities for each (r-z annulus)
r

$$
\begin{gathered}
\rho \Rightarrow r \rho \\
\rho \boldsymbol{u} \Rightarrow r \rho \boldsymbol{u} \\
E \Rightarrow r E \\
P \Rightarrow r P \\
\frac{P}{\rho} \Rightarrow \frac{P}{\rho}
\end{gathered}
$$

- Then source terms associated with the radial flux go away...

Modified geometric source terms

- We can eliminate many of the source terms associated with the advection of densities if we scale the densities of mass, momentum, and energy by the metric scale factor

$$
g^{\frac{1}{2}}=\frac{d \tau}{d q^{1} d q^{2} d q^{3} . .}
$$

- And use the identity $g^{\frac{1}{2}} \Gamma_{k j}^{j}=\frac{d\left(g^{\frac{1}{2}}\right)}{d q^{k}}$
- Then the source terms simplify to:

$$
\begin{aligned}
& S_{\rho}=0 \\
& S_{p_{i}}=-\rho u^{j} u^{k} \Gamma_{k j}^{i}-P g^{j k} \Gamma_{j k}^{i} \\
& S_{E}=0
\end{aligned}
$$

$$
\left[\begin{array}{c}
0 \\
\rho u_{\phi}^{2} r \\
-2 \rho u_{\phi} u_{r} \\
\hline r \\
0 \\
0
\end{array}\right]
$$

- Note also that AstroBear does this for the angular momentum in order to store the magnitude of the angular momentum density.

$$
q(\mathrm{iAngMom})=\rho v_{\phi} \text { instead of } \rho \omega
$$

