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1 Aims

• Conserve energy (bulk kinetic+thermal+gravitational potential) to machine precision.

• This was done without particles so that gravitational PE is only due to self-gravity by Jiang et al. (2013);
see also Pen (1998).

• Now we want to do this with point particles included.

• Below we follow the procedure of Jiang et al. (2013) but generalize it to include the particle-gas potential
energy terms.

2 Equations

Eq. (5) of Jiang et al. (2013) is generalized as

Etot = E + 1
2ρφself + ρφpart (1)

The energy equation (3) of Jiang et al. (2013) becomes

∂E

∂t
+ ∇ · [(E + P )v] = −ρv ·∇(φself + φpart). (2)

This can be rewritten as (c.f. Eq. (9) of Jiang et al. 2013)

∂

∂t

(
E + 1

2ρφself + ρφpart
)

+ ∇ · [(E + P )v + Fg] = 0. (3)

We want to derive an expression for Fg, which was already done in Jiang et al. (2013) for the case φpart = 0.

3 Calculation

Using Eq. (2), Eq. (3) can be written as

∂

∂t

(
1
2ρφself + ρφpart

)
+ ∇ · Fg = ρv · (∇φself + ∇φpart). (4)

The continuity equation is
ρ̇ = −∇ · (ρv). (5)

Solving for Fg in Eq. (4) and using Eq. (5), we obtain (c.f. Eq. (11) of Jiang et al. 2013)

∇ · Fg = ∇ · (ρv)
(
1
2φself + φpart

)
+ ρv ·∇(φself + φpart)− ρ

(
1
2 φ̇self + φ̇part

)
. (6)

Poisson’s equation is
∇2φself = 4πGρ, (7)

and differentiating this equation with respect to time we obtain (c.f. Eq. (12) of Jiang et al. 2013)

∇2φ̇self = 4πGρ̇. (8)
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First, let’s break up the first term in Eq. (6) to write

∇ · Fg = ∇ · (ρv)φself − 1
2∇ · (ρv)φself + ∇ · (ρv)φpart + ρv ·∇(φself + φpart)− ρ

(
1
2 φ̇self + φ̇part

)
. (9)

Now, using Eqs. 7 and (8), Eq. (9) can be written as

∇·Fg = ∇·(ρv)φself +ρ(v ·∇)φself +
1

8πG
(φself∇2φ̇self−φ̇self∇2φself)+∇·(ρv)φpart+ρv ·∇φpart−ρφ̇part. (10)

Now

∇·(φself∇φ̇self−φ̇self∇φself) = ∇φself ·∇φ̇self+φself∇2φ̇self−∇φ̇self ·∇φself−φ̇self∇2φself = φself∇2φ̇self−φ̇self∇2φself

and
∇ · (ρvφself) = ∇ · (ρv)φself + ρv ·∇φself ,

and similarly for φpart. Using these relations in Eq. (10) we obtain

∇ · Fg = ∇ ·
[
ρvφself +

1

8πG
(φself∇φ̇self − φ̇self∇φself)

]
+ ∇ · (ρv)φpart + ρv ·∇φpart − ρφ̇part

= ∇ ·
[
ρv(φself + φpart) +

1

8πG
(φself∇φ̇self − φ̇self∇φself)

]
− ρφ̇part.

(11)

This is in the form of a divergence of a flux density except for the last term. So we now focus on that term.
Using the Poisson equation (7) we can write

−ρφ̇part = − 1

4πG
φ̇part∇2φself = − 1

4πG

[
∇ · (φ̇part∇φself)−∇φ̇part ·∇φself

]
=

1

4πG

[
∇ · (φself∇φ̇part − φ̇part∇φself)− φself∇2φ̇part

]
.

(12)

This leaves us with

∇ · Fg =∇ ·
[
ρv(φself + φpart) +

1

8πG
(φself∇φ̇self − φ̇self∇φself) +

1

4πG
(φself∇φ̇part − φ̇part∇φself)

]
− 1

4πG
φself∇2φ̇part

(13)

Now, this last term is equal to zero for true point particles since

∇2φ̇part =
∂

∂t
∇2φpart =

∂

∂t
∇2

(
N∑
i

GMi

|r − ri|

)
= −4πG

N∑
i

∂

∂t

[
Miδ

3(r − ri)
]

= 0 (14)

where the last equality follows from the fact that r is never precisely equal to ri, i.e. there is no gas at the
exact location of the particle. Therefore, for true point particles we would finally have

∇ · Fg = ∇ ·
[
ρv(φself + φpart) +

1

4πG

(
φself∇(φ̇part + 1

2 φ̇self)− (φ̇part + 1
2 φ̇self)∇φself

)]
, (15)

and Fg can be chosen to equal the quantity in the square brackets. This expression reduces to Eq. (13) of
Jiang et al. (2013) for φpart = φ̇part = ∇φpart = 0, as required.

However, the particles in the simulation are not true point particles because they have spline potentials.
Let u = |r − ri|/h, with h the softening radius. Then the spline potential is given by

φpart = −GMi

h


−16

3
u2 +

48

5
u4 − 32

5
u5 +

14

5
, if 0 ≤ u < 0.5;

− 1

15u
− 32

3
u2 + 16u3 − 48

5
u4 +

32

15
u5 +

48

15
, if 0.5 ≤ u < 1;

1

u
, if u ≥ 1.

(16)

Now

∇2φ̇part =
∂

∂t
∇2φpart =

∂

∂t
∇ ·∇φpart = − ∂

∂t
∇ · g,
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For g = −∇φpart = −(∂φpart/∂u)(∂u/∂r)∇r = −(1/h)(∂φpart/∂u)r̂ one obtains

g = −GMi

h2
r̂



32

3
u− 192

5
u3 + 32u4, if 0 ≤ u < 0.5;

− 1

15u2
+

64

3
u− 48u2 +

192

5
u3 − 32

3
u4, if 0.5 ≤ u < 1;

1

u2
, if u ≥ 1.

(17)

Using the divergence formula in spherical coordinates ∇ · g = (1/r2)[∂(r2gr)/∂r], I compute

∇2φpart = −GMi

h3


32− 192u2 + 192u3, if 0 ≤ u < 0.5;

64− 192u+ 192u2 − 64u3, if 0.5 ≤ u < 1;

0, if u ≥ 1.

(18)

We see then that for r ≥ h, the extra term − 1
4πGφself∇

2φ̇part vanishes, but otherwise it does not. This implies
that for gas inside the softening radius, one cannot use this conservative approach. For gas outside the softening
spheres of the particles, the conservative approach summarized by Eq. (15) is applicable.
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