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ABSTRACT

[Eric: Binaries are likely needed to explain the ubiquity of bipolar planetary nebulae (PNe) and
pre-planetary nebulae (pPNe). The binary central stars of several bipolar PNe are close enough
to imply that they, and likely many more, experienced common envelope (CE) interaction,
whereby the core of the original asymptotic giant branch (AGB) star and its companion
rapidly spiralled in toward [Luke: one] another, and ejected the envelope. CE evolution [Luke:
(CEE)] is presently poorly understood and is computationally demanding. Simulations have
yet to conclusively determine how the envelope is ejected and a tight binary results if only
the binary potential energy is used to propel the envelope. Additional power sources might
be necessary. Accretion onto the in-spiraling companion is one such source. Accretion is
likely common in post-AGB binary interactions but how it operates and how its consequences
depend on binary separation remain open questions. Here we use high resolution global 3-D
hydrodynamic simulations of CEE with the AMR code AstroBEAR, to bracket the range
of CEE companion accretion rates by comparing runs that remove mass and pressure via a
subgrid accretion model with those that do not. The results show that if a pressure release valve
is available, super-Eddington accretion may be common. Jets are a plausible release valve in
these environments, and they could also help unbind and shape the envelopes.]

Key words: binaries: close – accretion, accretion discs – stars: kinematics and dynamics –
hydrodynamics – methods: numerical

1 INTRODUCTION

2 METHODS

2.1 Setup

Simulations are performed with the adaptive mesh refinement

(AMR) multiphysics code AstroBEAR (Cunningham et al. 2009;

Carroll-Nellenback et al. 2013). Our numerical setup and chosen

physical parameter values follow closely those of Ohlmann et al.

(2016, 2017) (hereafter ORPS16 and ORPS17, respectively), al-

though the numerical methods are very different from theirs (e.g.

AMR vs. moving mesh). In particular, the setup and preparation of

the red giant (RG) star is very similar to theirs with a few minor

differences discussed below, and was chosen to be such for two

reasons. First, the method had been shown to result in a star with

remarkably small deviations from hydrostatic equilibrium. Second,

this choice enables a consistency check between independently ob-

tained results, namely ours and theirs.

Below we summarize the procedure. The reader is referred to

⋆ lchamandy@pas.rochester.edu
† afrank@pas.rochester.edu
‡ blackman@pas.rochester.edu

ORPS17 for details, and we remark on any important differences

between the two approaches below. We first evolve a star with a zero-

age main sequence mass of 2M⊙ using the 1D stellar evolution code

MESA (version 8845) (Paxton et al. 2011, 2013, 2015), setting the

metallicity Z to 0.02, and select the snapshot that most closely

coincides with the RG of ORPS16; ORPS17 on the Hertzsprung-

Russell diagram. This star we refer to below as the primary, while

we refer to its companion as the secondary.

Resolving the pressure scaleheight in the core is not numer-

ically feasible. This is addressed by truncating the RG at a radius

r = rc = 2.41R⊙ , and replacing the core with the combination of a

gravitation-only sink particle and a modified profile which matches

smoothly the density at rc. The modified profile is obtained by

solving numerically a modified Lane-Emden equation, with poly-

tropic index n = 3, that takes into account the gravitation of the

sink particle, and also satisfies the boundary conditions for ρ and

dρ/dr . Below we sometimes refer to this particle as the primary

particle and to the remainder of the RG as the primary envelope,

and [Luke: to] their masses by M1 (primary), m1 (primary particle)

and m1,env (primary envelope). Unlike in ORPS16; ORPS17, where

the sink particle mass m1 is set equal to the interior mass m(rc) of

the MESA profile, we iterate over m1, solving the equation at each

iteration until m1 + m1,env(rc) = m(rc), where m(r) is the interior
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mass and m1,env(rc) is the interior gas mass of the modified pro-

file. This prevents the mass of the modified RG exceeding slightly

that of the original MESA RG, and more importantly, it allows one

to maintain a higher degree of hydrostatic equilibrium in the RG.

The initial mass and radius of the primary are M1 = 1.956M⊙ and

R1 = 48.1R⊙ , respectively, with the sink particle at the RG centre

having mass m1 = 0.369M⊙ .

[Eric: a little confusing as reader think centre would be fixed

in centre of mass frame] [Luke: Simulations are] carried out in the

inertial centre of mass frame, but with [Luke: the centre of the mesh

coinciding with the initial position of the primary particle.] [Luke

comments: The centre of the mesh is fixed in the inertial frame, it

does not move around with the primary particle. Not sure if this was

the confusion. In any case hopefully the meaning is clear now?] We

choose extrapolating hydrostatic boundary conditions and adopt a

multipole expansion method for solving the Poisson equation. The

ambient medium is chosen to have constant density and pressure

of 6.67 × 10−9 g cm−3 and 1.01 × 105 dyn cm−2; these values are

similar to the values at the surface of the RG. The ambient pressure

(some seven orders of magnitude smaller than the central pressure of

the modified envelope) is added everywhere in the domain to obtain

a smooth transition between the stellar surface and its surroundings.

It is chosen just large enough to ensure that the pressure scaleheight

is adequately resolved at the stellar surface. Using a lower ambient

density results in larger ambient sound speeds and smaller timesteps,

resulting in reduced computation speed. In lower resolution tests we

found that reducing the ambient density to 10−10 g cm−3 makes no

significant difference in the region of interest. We also experimented

with invoking a hydrostatic atmosphere instead of a uniform ambient

medium, but found that this results in numerical instabilities arising

at the corners of the mesh.

A second sink particle with mass equal to half that of the

RG, or m2 = 0.978M⊙ , is placed at a distance a0 = 49.0R⊙ from

the primary sink particle, just outside of the RG, at t = 0. This

particle represents either a main sequence star or a white dwarf.

For both particles, a spline function (Springel 2010) is used with

softening length rs set to be equal to rc. The particles and RG

envelope are initialized in a circular Keperian orbit. Unlike RT08;

RT12; ORPS16, the RG envelope is not initialized to have a spin

relative to the centre of mass reference frame. [Luke comments:

Make argument based on Macleod’s new simulations that if RG was

spinning in corotation with orbit at the start of Roche lobe overflow,

it would no longer be spinning at this rate. So it is not fully clear

what value to use. In future we hope to try simulating different spins.

It would also be interesting to try different initial separations, but

for now we are limited by computational resources.]

Below we compare two runs, which we refer to as Model A and

Model B. The main difference is that a sub-grid accretion model

is implemented only for Model B. However, the setups for these

runs are otherwise slightly different. Model A uses a box with

side length L = 1150R⊙ , while for Model B L = 575R⊙ . For

Model B, we apply the velocity damping algorithm of ORPS17

until 5tdyn, with tdyn set to 3.5 d, but for Model A we do not apply

any velocity damping. We performed low resolution tests with and

without damping, and found that it made very little difference to the

particle orbital evolution and CE morphology. Further, we studied

plots of gas density, pressure and sound speed between t = 0 and

t = 1.2 d to measure the differences between the two simulations.

[Luke comments: Yisheng is still improving this analysis which will

result in one or two sentences to quantify the difference, and some

plots that could go into an appendix if say the referee complains,

but so far the difference between the two runs looks to be acceptably

small.]

The highest spatial resolution of 0.140R⊙ and base resolution

of the ambient volume of 2.25R⊙ are both the same for Models A

and B, and there is a buffer zone in between to allow the resolution to

transition gradually. The region within which maximum refinement

is performed by the code is slightly different in extent and shape for

Models A and B, as are the extents of the buffer zones.1 For both

runs, however, the region of maximum refinement moves along

with the particles and contains them (as well as a portion of the

surrounding gas) at all times, so that the resolution is both uniform

and very high in the region of interest. In addition, the softening

length for the sink particles is reduced to half of its initial value about

halfway through the simulation for Model A, while the smallest

resolution cell was halved to 0.070R⊙ , but not for Model B. This

step was taken to ensure that the softening length never exceeded the

somewhat arbitrary fraction of 1/5 of the inter-particle separation

(cf. ORPS16). Limited computational resources prohibit us from

redoing one of the runs to make these parameter values match more

precisely, but we are confident that these differences result in only

minor differences in the results and do not affect our conclusions.

Finally, Model A was run up to 40 d, while Model B was run up to

69 d but we choose to present results for the first 40 d only.

2.2 Modelling the accretion

Model A does not employ a sub-grid accretion model, and thus

resembles closely the setup of ORPS16, and, to a lesser extent those

of the other global CE simulations from the literature which also do

not have sub-grid accretion. On the other hand, Model B employs

the accretion model of Krumholz et al. (2004) for the secondary,

but not for the primary particle[Luke: , because our goal is to ex-

plore accretion onto the secondary.]2 This prescription is based

on the Bondi-Hoyle-Lyttleton formalism (Hoyle & Lyttleton 1939;

Bondi & Hoyle 1944; Bondi 1952, see Edgar 2004 for a review).

It has been argued that the Bondi-Hoyle-Lyttleton formalism

overstimates the accretion rate in CE evolution (Ricker & Taam

2008, 2012; MacLeod & Ramirez-Ruiz 2015; MacLeod et al.

2017). It is not our intention here to argue this point one way or

the other. Rather we wish to explore what happens when we allow

the secondary to accrete at a high but still plausible rate, and the

Krumholz et al. (2004) model, being well-motivated physically and

well-tested numerically [Luke: (Li et al. 2014)], is currently the best

tool we have for this purpose.

Accretion is permitted to take place within a zone of four

grid cells from the secondary. Krumholz et al. (2004) suggests that

the Plummer softening radius should be smaller or equal to the

accretion radius, to avoid artificially reducing the accretion rate due

to the reduced gravitational acceleration inside the softening sphere.

The spline potential employed is roughly equivalent to a Plummer

potential with a Plummer softening radius that is 2.8 times smaller

than the spline softening radius of ≈ 17 grid cells (this factor gives

equal values of the potential at the origin). Thus, the accretion radius

(4 cells) is close to but slightly smaller than the Plummer-equivalent

softening radius (≈ 6 cells), which implies that the accretion rate

1 For Model A, this region is spherical and centred on the primary particle

until t = 16.7 d, after which it is centred on the secondary. For Model B,

there are two such overlapping regions, one spherical centred on the primary

particle, and the other cylindrical with axis [Luke: orthogonal to the orbital

plane] and centred on the secondary.
2 [Luke: In any case, we shall see in Section 3.2 that while the flow around

the secondary has certain properties expected for an accretion flow even in

Model A (no sub-grid accretion), the same cannot be said about the flow

around the primary particle.]
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is likely to be reduced somewhat from the value it would have

had had the two radii been set equal. In this sense, the sub-grid

model employed can be thought of as a slightly “milder” version of

Krumholz et al. (2004).

3 RESULTS

3.1 Description of runs

In Figures 1 and 2 we present snapshots of slices of gas density

in the orbital plane at t = 0, 10, 20 and 40 d, for Models A and B,

respectively, with axes in units of R⊙ , and density in units of g cm−3.

These figures and others to follow are drawn such that the secondary

is located at the centre and the primary point particle is to its left,

with the spline softening sphere depicted with a green circle around

each particle. These snapshots can be thought of as frames from

a movie taken in a reference frame rotating with the instantaneous

angular velocity of the particles. The global evolution is very similar

between the two runs, and closely agrees, at least qualitatively, with

the results of ORPS16. The spiral shock morphology that develops

is also consistent with the results of other global CE simulations

more generally.

The distance between the two particles in the orbital plane a as

a function of time is illustrated in Figure 3, solid blue for Model A

and dashed light blue for Model B. Jagged solid red and dashed

orange lines are plotted to show the radius of the sphere within

which the resolution is at the highest refinement level, while solid

green and dashed light green show the spline softening radius, for

Models A and B respectively. The initial reduction in separation for

the first∼ 12 d is known as the plunge-in phase, and each subsequent

oscillation corresponds to a full orbit of 2π radians.

The curves for Models A and B are almost identical up to

about t = 15 d, at which point they begin to diverge slightly. This

time does not correspond to any change in refinement radius or

softening length, but it does correspond approximately to the peak

of the accretion rate for Model B, as will be discussed in Section 3.2.

Therefore, the initial difference at least can be safely concluded to

be caused by the difference in accretion prescriptions between the

two runs. In Model A, 10 orbits are completed by t = 40 d, while

in Model B, 9 orbits are completed, so the mean orbital frequency

is higher in Model A between t = 15 d and t = 40 d than for

Model B. This is consistent with the mean inter-particle separation

being slightly lower for Model A than for Model B during the same

time interval. However, a closer look tells us that from t ∼ 15–

17 d, Model B shows a smaller separation and mean orbital period

than Model A, while Model B shows a larger separation and mean

orbital period than Model A after t ∼ 17 d. This suggests that the

reduction in softenening length causes the orbital period to decrease

in Model A after t ∼ 17 d, compared to what it would have been had

the softening length remained the same. However, between t ∼ 15–

17 d, the sub-grid accretion causes the orbital period to reduce in

Model B from what it would have been had sub-grid accretion

been turned off. Therefore, both sub-grid accretion and reduction

of the softening length tend to reduce the orbital period and mean

separation. We elaborate on this point in Sections 3.2 and 4.

Both curves of separation vs. time resemble qualitatively that

of ORPS16. However, in that work the particles complete only 7

orbits by t = 40 d. Moreover, the first minimum is lower than the

second, which is not the case in our runs, where the minima and

maxima decrease monotonically with time. The main cause for these

differences is probably the fact that in ORPS16 the RG is initialized

with a solid body rotation of 95% corotation, whereas in our case

the initial angular rotation speed is zero, but it would be interesting

to explore the effects of initial spin in a future study.

We now turn to the insets of Figure 3, where the orbits are

plotted for Model A on the left and for Model B on the right.

The orbit of the primary particle is shown in blue shades and the

secondary in red/orange shades.3 The spline softening spheres are

indicated with green circles for t = 0 and, for Model A, also for

t = 16.7 d, when the softening length is halved. Orbits resemble

qualitatively the orbit obtained by ORPS16.

Next we show, in Figure 4, slices of ρ at t = 40 d that pass

through both particles and which cut through the orbital plane or-

thoganally, so that the view is edge-on with respect to the particles’

orbit. The left-hand column shows results for Model A while the

right-hand column shows results for Model B, and the top and

bottom rows present different levels of zoom. The layered shock

morphology is qualitatively very similar to that seen in other CE

simulations (e.g. Iaconi et al. 2017). Models A and B also show

quite similar morphology but with one conspicuous difference. A

torus-shaped structure is present around the secondary in Model B,

which employs sub-grid accretion, but is absent in Model A. This

structure is reminiscent of a thick accretion disc [Luke comments:

make reference to ADAF here?] and is accompanied by a low-

density elongated bi-polar structure, seen in blue in the bottom-right

panel of Figure 4. Clearly, accretion is the cause for the presence

of this striking morphology in Model B. Below we examine the

properties of the flow around the companion in more detail for both

runs.

3.2 Accretion

We have established that accretion affects both the orbit of the

particles and the morphology of gas around the secondary. We now

explore the flow of gas toward and away from the secondary in more

detail.

3.2.1 ‘Accretion’ in the absence of a sub-grid model

For Model A, sub-grid accretion is turned off, but we can meas-

ure the rate of mass flowing toward the secondary. We do this by

following RT08; RT12 in plotting the gas mass inside spheres of a

given radius centred on the secondary against time in the top panel

of Figure 5. The blue curves and left-hand vertical axis represent the

accumulated gas mass ∆Min,2, while the red curves and right-hand

vertical axis show the accretion rate ÛMin,2, for each of the control

spheres whose radius appears in the legend. These quantities are

obtained by integrating the gas mass inside the control sphere at

each time and then differentiating the resulting time series to ob-

tain a rate. The green vertical line indicates the time at which the

softening length is halved. For reference, we remind the reader that

the mass of the secondary sink particle is m2 = 0.978M⊙ , and that

of the primary sink particle is m1 = 0.369M⊙ .

The qualitative behaviour is approximately independent of the

control radius, or put another way, the curves differ in amplitude

but are very similar in shape. This tells us that the flow near the

secondary is ‘global,’ in the sense that the gas at different radii

moves inward or outward at the same time (on average over each

spherical surface). We see that the inflow rate is relatively small until

t ≈ 10 d, and that it peaks shortly thereafter, between t ≈ 12.5 d

3 [Luke: The sampling rate used to draw the orbits in Figure 3 is about one

frame per 0.23 d, resulting in a slightly “choppy” appearance at late times

that is not related to the time sampling in the simulation.]
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Figure 1. Density, in g cm−3 in a slice through the secondary and orthogonal to the xy orbital plane, for Model A (no sub-grid accretion model). The secondary

is positioned at the centre with the frame rotated so that the primary particle is always situated to its left (the frame of reference is rotating with the instantaneous

angular velocity of the particles’ orbit). Both particles are denoted with a green circle with radius equal to the spline softening length. Snapshots from left to

right are at t = 0, 10, 20 and 40 d.

Figure 2. As Fig. 1 but now for Model B, with the Krumholz et al. (2004) sub-grid accretion model turned on for the secondary.

and t ≈ 13.5 d, depending on the control radius. During this time

Min,2 increases monotonically, until it reaches a local maximum at

t ≈ 15 d, and decreases slightly before increasing again (this feature

is most clearly visible in the curve for control radius 3R⊙ , but occurs

in the other curves as well). This local maximum approximately

coincides with the first maximum in the inter-particle separation

curve of Figure 3. As Min,2 is increasing, the softening length is

halved at t = 16.7 d. This results in a prolonged increase (modulated

by small oscillations) until t ≈ 21 d, which is the time of the third

periastron, at which point the average interior mass remains roughly

constant, but exhibits oscillations. These oscillations are explained

by oscillations in the inter-particle separation, with local maxima of

Min,2 approximately coinciding with periastrons, and local minima

approximately coinciding with apastrons. [Luke comments: I need

to mark the locations of the periastrons and apastrons on the axes.

Yisheng is working on this.] We also see a slow decline in the mean

value of Min,2 after t ≈ 28 d.

The initial rise in Min,2 is accompanied by a less pronounced

rise in Min,1 until t ≈ 13 d (just after the first periastron), followed

by a sharp decrease, in Min,1. Min,1 receives a ‘boost’ immediately

following the change in softening radius at t = 16.7 d, as seen

by the positive accretion rate even for the smallest control radius.

Subsequently, Min,1 experiences a gradual decay, modulated by

oscillations that are approximately in phase with those of Min,2.

These features can be explained as follows. As the plunging-in

secondary approaches the high-density RG core, it accretes at an

ever higher rate, until it has accreted a quasi-steady envelope around

itself. The mean mass of this envelope over several orbits remains

approximately constant. In addition, the primary retains around

itself part of the remnant RG envelope. When the two particles

come closer, a larger portion of the primary envelope extends into

the control sphere surrounding the secondary, leading to a larger

integrated mass inside the control sphere of the secondary. Likewise,

this also leads to a larger integrated mass inside the control sphere

of the primary particle due to the envelope around the secondary.

When the particles separate, Min,2 and Min,1 decrease again for the

same reason, and it is this back-and-forth relative motion that leads

to the oscillations described above.

When the softening radius is reduced from rs to

[Luke : r
′
s =]rs/2, the potential well becomes twice as deep at r = 0

and the acceleration due to gravity of each particle gets increased

everywhere within the sphere of radius rs centred on the particle.

Thus, gas flows toward the secondary until a more massive, more

concentrated quasi-steady envelope becomes established. The same

is true, but to a lesser extent, for the less massive primary particle.

The gradual decrease in the orbital separation is mainly caused

by gas dynamical friction acting on the secondary (RT08; RT12;

MacLeod et al. 2017). This dynamical drag force is ∝ m
2
2
, so or-

bital energy will be dissipated at a higher average rate, leading to

a reduction in the mean separation a. This, in turn, will result in a

smaller orbital period according to Kepler’s third law.

Finally, the slow decrease in the interior mass Min,2 during the

final ≈ 12 d for the secondary, and a similar decrease in Min,1 for the

primary particle, can be roughly explained by the reduction in size
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Figure 3. Inter-particle separation in the orbital plane (z = 0) for Model A without sub-grid accretion (solid blue) and Model B with sub-grid accretion (dashed

light blue). Also shown are jagged lines denoting the radius of the spherical region of highest mesh refinement (solid red for Model A and dashed orange for

Model B), and the spline softening radius (solid green for Model A and dashed light green for Model B). Inset: Orbit of the sink-particles, with Model A

depicted on the left and Model B on the right. The centre of mass is located at the origin in each panel. The primary particle is shown in red/orange while the

secondary is shown in blue/light blue. Green/light green circles with radius equal to the spline softening length are shown at t = 0 and, for Model A, also at

t = 16.7 d, when the softening length is halved.

of the Roche lobes as the inter-particle separation becomes smaller.

The gravitational influence of each particle extends less far out than

before, so the size of the envelope that each particle can retain is

reduced. [Luke comments: Can check this explanation using movies

of density with Roche potential overplotted.]

3.2.2 Accretion obtained by including a sub-grid model

We now turn to Model B, which includes Krumholz et al. (2004)

sub-grid accretion. The plots of Min,2 and Min,1 and their rates of

change are qualitatively similar to those for Model A, except that we

do not see pronounced oscillations. [Luke comments: Maybe not

necessary to show these figures though I’ve included them for now

for our reference. In any case, I will redo them with higher sampling

rates even just for our own benefit.] Moreover, the rates ÛMin,2 and
ÛMin,1 are almost always negative after Min,2 has peaked. Since the

main difference between Model A and Model B is the presence

of sub-grid accretion in the latter, this result suggests that the gas

reservoir is primarily governed by accretion onto the secondary

(though the larger softening length in Model B may also play a

role).

This hypothesis is supported by [Luke: the bottom panel of]

Figure 5, which shows the evolution of the [Luke: change in] second-

ary mass [Luke : ∆]m2, along with [Luke: the] rate of change[Luke:

Ûm2].4 [Luke comments: Must comment on the convergence of

4 [Luke: The rate is calculated using a central difference method accurate

these results with resolution.] Accretion begins at t ≈ 12 d, co-

inciding with the first periastron. The accretion rate Ûm2 peaks

between t = 16 d and t = 17 d at Ûm2 ≈ 2.7M⊙ yr−1. By the end

of the simulation, the accretion rate is fairly steady and equal to

Ûm2 ≈ 0.3M⊙ yr−1, though there are significant oscillations that

may be correlated with the oscillations in the inter-particle separa-

tion. [Luke comments: Should check this more carefully and mark

the periastrons and apastrons on this figure too.] Thus, by the end

of the simulation at t = 40 d the secondary has accreted 0.064M⊙ ,

for a 6.5% gain in mass, and continues to accrete steadily.

3.2.3 Flow around the secondary

[Luke comments: Need an intro here explaining the purpose of this

section]

In Figure 6 we plot in color the local tangential velocity [Luke:

vφ,2] with respect to the secondary in the frame of reference that ro-

tates at the instantaneous angular velocity of the particle orbit about

the secondary. Shown is a slice through the secondary orthogonal

to the orbital plane at t = 40 d, with green circles showing the loca-

tions of the spline softening spheres. Here vφ,2 is normalized with

respect to the Keplerian speed vK about the secondary (corrected

for the spline potential within the softening radius). A white contour

delineates where vφ,2 = 0, and the vectors show the direction and

to second order. The sampling rate is constant and approximately equal to

one frame every 0.23 d.]
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6 L. Chamandy et al.

Figure 4. Gas density in g cm−3 viewed in a slice through both particles that is perpendicular to the orbital plane at t = 40 d. Model A (no sub-grid accretion)

is shown in the left-hand column and Model B (Krumholz et al. 2004 sub-grid accretion) is shown in the right-hand column, while the top and bottom row

show two different levels of zoom. The secondary is situated in the centre of each panel and the frame is rotated so that the primary particle is located to its

left. Spline softening spheres are identified by green circles. The x′-axis is defined by the line in the orbital plane that passes through both sink particles.

relative magnitude of the velocity field of the gas projected onto the

slice.

It can be seen from Figure 6 that vφ,2 > 0 only within about

3 to 4R⊙ of the secondary for Model A, and about 5 to 6R⊙ of

the secondary for Model B. Outside of this region, the gas rotates

clockwise (vφ,2 < 0, which means that it lags the orbital motion

of the particles. Inside the region of counter-clockwise rotation, the

vectors show that the gas also has a significant radial component vr,2
and that this component is positive in some locations and negative in

others. The magnitude of the tangential component is ∼ 1
4

VK within

about 2R⊙ from the softening radius in both simulations. [Luke

comments: Must comment on the convergence of these results with

resolution.]

4 DISCUSSION [Eric: USE SECTION TITLE THAT

BETTER DESCRIBES CONTENT]

[Luke comments: Points for discussion:

• Reducing softening length seems to result in tighter orbit...

– what are the larger implications of this, also vis-a-vis results

of ORPS16?

– could this be why the simulations “stall” before a merger

can take place? [Jason: co-rotation of the gas, and thus stalling

of the orbit, will not occur in a realistic star. The "stall" radius in

these simulations is still inside the convective zone.]

]

[Eric: Comparing the no-accretion case with [Luke: the] Krum-

holz case highlights that sustained long term accretion requires a

pressure valve. The Krumholz prescription takes away both mass

and pressure[Luke: , allowing] material to continue to infall at the

inner boundary. If we disallow this infall, the accretion flow eventu-

MNRAS 000, 000–000 (0000)



Companion accretion in common envelope evolution 7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
t [d]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

M
in
,2

[M
⊙]

0.5R⊙
R⊙
2R⊙
3R⊙

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
t [d]

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

∆
m

2
[M

⊙]

0

0.5

1

1.5

2

2.5

3

ṁ
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Figure 5. [Luke: Top panel:] ‘Accretion’ by the companion for Model A, which is not true accretion because no sub-grid accretion model is used. The total

mass contained within spheres of various radii (see the legend) are shown in blue with labels on the left-hand vertical axis, while the rate of change of this

quantity is shown in red with labels on the right-hand vertical axis. A vertical light green line marks the time at which the softening length is reduced by half.

[Luke: Bottom panel:] Accretion by the companion for Model B, for which the Krumholz et al. (2004) sub-grid accretion model is used. The accreted mass is

shown in blue (left-hand vertical axis) and the accretion rate, obtained by differentiating the accreted mass, is shown in red (right-hand vertical axis).

ally ceases. The Krumholz prescription was originally developed for

protostellar accretion where material that accretes onto the central

object can lose its pressure via radiation through optically thin gas.

In the present case, the gas is optically thick, so we do not expect

such pressure [Luke: to] release radiation. A more likely alternative

is a hydrodynamic pressure release from jets. In fact, we expect

that the only way to sustain accretion in these dense environments

is via a jet, thereby implying a [Luke: direct] connection between

jets and accretion if the latter occurs inside CE. A jet will provide a

pressure release value that is finite but not as large as the Krumholz

prescription. Our two cases (no accretion vs. accretion) therefore

bound the two extreme cases of pressure values.]
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Figure 6. Slice through the orbital plane at t = 40 d with colour showing the tangential (with respect to the secondary, located at the centre of each panel)

component of the velocity in the frame of reference rotating about the secondary with the instantaneous orbital angular velocity of the sink particles. Values

are normalized by the local Keplerian circular speed around the secondary, corrected for the spline potential inside the softening sphere. The zero value, where

the tangential component reverses direction, is shown by a white contour. Vectors show the direction and magnitude of the projection of this same velocity

onto the orbital plane (each vector refers to the location at which its tail begins). Model A (no sub-grid accretion) is shown on the left and Model B (Krumholz

sub-grid accretion) is shown on the right. Softening spheres are indicated by green circles.

[Eric: If it were the case that a jet cannot form, we would have

to conclude that evidence for observed powerful outflows in PPN

would not emanate from inside the CE but from the Roche Lobe

overflow phase before the full CE system emerges. Interesting future

work would involve studying the fate of a jet formed outside the CE

as it enters the CE.]

5 CONCLUSIONS
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