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ABSTRACT
We analyze a 3D hydrodynamic simulation of common envelope evolution to understand how
energy is transferred between various forms leading to the partial unbinding of the envelope. It
is found that 14% of the envelope is unbound during the simulation, though this value could be
higher or lower depending on the definition of ‘unbound’ that is adopted. Essentially all of the
unbinding occurs between the beginning of the simulation and the end of the rapid plunge-in
phase, here defined to coincide with the first periastron passage. By contrast, the total envelope
energy is roughly constant during this time because positive energy transferred to the gas is
counterbalanced by an increase in negative binding energy due to the closer proximity of the
inner layers to the plunged-in secondary. Subsequently, during the slow spiral-in phase, energy
continues to be transferred from the red giant core-secondary particle system to the envelope
at a rather steady rate, and we discuss the possibility of complete ejection or merger at times
much longer than the duration of the simulation. We critically assess the so-called α-energy
prescription in the light of these findings, and suggest an alternative formulation. In addition,
we propose that the relative motion between the centre of mass of the envelope and that of the
red giant core-secondary system could account for the offsets of planetary nebula central stars
from the geometric centres of their nebulae in at least some cases, and that this relative motion
should also be taken into account when assessing the extent to which the envelope is bound.

1 INTRODUCTION

• Observations, direct and indirect, of very close binaries be-
lieved to be the result of CEE.
• Examples include central stars of PNe an pPNe, progenitors of

BH-BH and NS-NS mergers, high- and low-mass X-ray binaries,
and probably SNe type Ia (Ivanova et al. 2013).
• Implication is that a merger is prevented in a large fraction

[Luke comments: (need a quantitative estimate)] of cases (REF).
• For this to happen must stabilize orbit by removing drag force.
• Simplest way to achieve this is by complete removal of the

envelope, but in reality removal may not need to be complete (REF).
• Energy formalism was developed to predict the fate of a given

binary system.
• In this prescription the two possible fates are merger or en-

velope ejection, but which it is depends on αCE which is a poorly
constrained parameter.
• Thus far the envelope has not been ejected in 3D hydro simu-

lations unless an additional energy source (recombination energy)
is introduced.
• The role of recombination energy is very controversial and it

is not at all clear whether it is important enough to explain envelope
ejection.
• Envelope ejection in simulations seems to be harder than ex-

pected (based on observations and theory; REFS).
• The reason may come down to

1) Limitations of the theory (unjustified approximations,missing
physics).
2) Limitations of the simulations (unrealistic initial conditions,
small duration, limited resolution, missing physics).

• Missing physics may include extra sources of energy, like re-
combination energy, accretion energy, nuclear energy, etc.
• The goal of this work is to account for the various energy terms

in the simulation as accurately as possible, and in so doing shed light
on the envelope ejection process. Pertinent questions are as follows:

1) How does the energy transition from one form to another with
time, and in what proportion does the liberated orbital energy get
transferred to the various other forms of energy?
2) What are the expectations for envelope removal and energy
transfer from analytic theory based on the CE energy formalism,
and to what extent do these expectations concur with simulation
results?
3) The theory contains an explicit uncertainty absorbed into the
factor αCE. What is the value of αCE from the simulations and
what is the explanation for this value in the simulation?
4) To the extent that analytical expectations and simulation res-
ults do not agree, what are the reasons for this, and does this
suggest any modifications in either the analytics or the simula-
tions, e.g. the inclusion of missing terms in the theory or the
inclusion of extra physics in the simulations?
5) Regardless of the level of agreement between theory and sim-
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ulations, one could imaginemaking the simulationsmore realistic
by including certain physical processes, like mixing due to con-
vection or new energy sources; what effects would including this
new physics have on envelope ejection?
6) The simulations are limited in that they can afford computa-
tionally to explore only a portion of the CE phase. In reality, this
phase starts earlier (from the Roche lobe overflow mass trans-
fer phase) and likely ends much later; what are the implications
of this extra time (and altered initial conditions) for envelope
removal?

1.1 Summary of relevant references

• Sandquist et al. (1998)

– Plots energy terms vs time (Fig 1).
– Compares for initial condition with or without rotation of

primary (Fig 1) and finds little difference.
– Plots various mass components including bound mass vs

time in Fig 8 (see also Figs 14 and 15 for other sims).

• Sandquist et al. (2000)
• Ricker & Taam (2008) (apparently does not contain much of

relevance)
• Passy et al. (2012)

– Virtually all of the mass that becomes unbound does so
within the first 50 days (Sec. 4.1) and this seems to correspond
to a time between the first periastron passage and first apastron
passage (Fig 4).

– In their SPH simulations they determine the initial radius in
the envelope of those particles which have become unbound by
the end of the simulation (Fig 10).

– From this figure there is about an equal contribution from
all radii at radii greater than half the stellar radius, and a much
smaller contribution for radii less than half the stellar radius (Fig
10).

• Ricker & Taam (2012)

– They simulate a 1.05 M� red giant with a 0.36 M� core and
a 0.6 M� companion.

– They find that by the end of the simulation 26% of the mass
has been unbound, and that the mass loss rate is fairly steady (Fig
9) (of this 25% about 4% (0.3 M� out of 0.18 M�) is already
unbound at t = 0).

– The mass loss rate at the end of the simulation is ∼
2 M� yr−1.

– They obtain a local peak in the unbound mass with time at
approximately the location of the first periastron passage (as we
do; see their Figs. 9 and 2).

– Defines the ‘energetic efficiency of mass outflow’ as ‘the
ratio of the energy required to unbind the ejected part of the
envelope to the energy released by the inspiralling cores.’ (This
is in principle hard to calculate and they estimate it from their
initial and final conditions).

– About 75% of the energy released by the inspiralling cores is
estimated to go into the part of the envelope that remains bound,
while the rest goes into unbinding material.

– If the mass loss rate at the end of the simulation continues
to be constant, then the envelope would become unbound within
two additional months.

• Nandez et al. (2014)

– KE and unbound mass rise at same time and then unbound

mass flattens (Fig 8; top panel includes internal energy in defin-
ition of unbound). This also coincides with the end of plunge-in
(although the separation vs time graph is not shown for that sim
376, had to reference table 3).

– Mass unbinding is bursty as shown in Fig 11.
– Follows KE of unbound particles with time (Fig 12)

• Nandez et al. (2015)

– Find that ‘between 1/4 and 1/2 of the released orbital energy
is taken away by the ejected material.’ (abstract)

• Nandez & Ivanova (2016) (apparently does not contain much
of relevance)
• Ivanova & Nandez (2016)

– “...we cannot detect the orbital energy deposition inside the
binary orbit, but outside of the orbit it affects the entire envelope,
primarily changing the mechanical energy of the envelope– the
potential energy and the kinetic energy (and kinetic energy is
converted to the potential energy with time)...”

– Identify 4 different phases of mass ejection (Sec 8).
– They include recombination energy.

• Staff et al. (2016a) (apparently does not contain much of rel-
evance)
• Staff et al. (2016b) (apparently does not contain much of rel-

evance)
• Kuruwita et al. (2016) (not directly relevant especially because

lots of outflow of mass outside of simulation box)
• Kruckow et al. (2016) Discusses energy formalism for massive

binaries (need to read it more carefully)
• Ohlmann et al. (2016)

– Analyzed total energy budget of envelope but in a way that
did not completely isolate the separate physical contributions.

– Found that 8% of envelope mass is ejected by end of their
simulation (with similar parameters to ours) at t ∼ 120 d.

– Found that most of this material is expelled in the first 40
days.

– Found that after t = 40 d the mass loss rate settles to about
0.015 M� yr−1.

– Argue that similar systems are observed to have ejected the
envelope.

– Hence conclude that either need longer timescales or addi-
tional energy sources.

• Iaconi et al. (2017)

– Analyzed energy budget but much of the gas left the box
early on which makes analysis difficult (Fig 14) for the enzo
simulation.

– But this not a problem from phantom simulation (Fig 14
bottom panel).

– Literature review of unbound mass fraction in CE simula-
tions (Tab. 1 and Sec 4.5).

• Clayton et al. (2017) claim that episodic mass ejections over
tens of years can unbind the envelope (they use 1D simulations).
• Iaconi et al. (2018)

– Find that fraction of envelope that is unbound increases with
resolution (Fig. 4)

– Discussion of the energy needed to unbind the remaining
bound mass (Sec 7.2)

– Discussion of the unbinding efficiency with reference to the
alpha prescription (Sec 7.3)
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– Calculates that there is enough energy release to unbind the
envelope but that this does not happen because the distribution of
energy is inefficient. We need to redo such an analysis but more
carefully.

– They find a trend (in agreement with Passy+12) that less
massive secondaries unbind less of the envelope even though
they inspiral deeper.

2 SIMULATION OVERVIEW

The simulation analyzed is Model A of Paper I, which involves
the interaction between a 2.0 M� red giant (RG) primary with a
0.4 M� point particle core and a 1.0 M� point particle representing
a white dwarf (WD) or main sequence secondary. Unlike Model B
of that paper, Model A did not have a subgrid model for accretion
onto the secondary, and Model A is chosen for the present study
partly because of its simplicity in this respect. We refer the reader
to Paper I for a more detailed description of the simulation setup,
but here we summarize the salient features.

The hydrodynamic simulation was performed using the 3D
adaptive mesh refinement code AstroBEAR (Cunningham et al.
2009; Carroll-Nellenback et al. 2013), and accounts for all gravita-
tional interactions (particle-particle, particle-gas, and gas-gas). The
RG density and pressure profiles were initialized using a procedure
similar to that outlined by Ohlmann et al. (2017) (for details see
Paper I). The simulation was initialized with the stars undergoing
a circular orbit at t = 0 with orbital separation a|t=0 = 49.0 R� ,
slightly larger than the RG radius of R1 = 48.1 R� , and was ter-
minated at t = 40 d. The mesh was refined at the highest level with
voxel dimension δ = 0.14 R� before t = 16.7 d and δ = 0.07 R�
thereafter everywhere inside a large spherical region centered on
the point particles. The initial radius of this maximally resolved re-
gion was rrefine = 72 R� and at all times rrefine > 2.5a. The spline
softening radius for both particles was set to rsoft ≈ 17δ for the
entire simulation.

3 ENERGY BUDGET

In the top panel of Figure 1 we present the time-evolution of each
energy component, integrated over the simulation domain. Times of
apastron and periastron passages are labeled on the axis by long blue
or short orange tick marks, respectively. Expressions for the various
contributions, as well as their values at t = 0, t = 13 d and t = 40 d,
are given in Tab. 1. The time t = 13 d is chosen because it is the
approximate time of first periastron passage and is thus a reasonable
choice for marking the end of the plunge-in phase and the beginning
of the slow spiral-in phase. The inter-particle separation goes from
a = 49.0 R� at t = 0 to a = 14.1 R� at t = 13 d and a = 7.8 R� at
t = 40 d.

A key result is that the potential energy term involving gas and
the secondary is important even when the secondary is situtated
just outside the RG surface (at t = 0) and at the end of plunge-
in at t = 13 d this term contributes almost half of the potential
energy associated with the gas. Moreover, the net energy tranferred
to the gas from t = 0 until t = 13 d is < 0.1 × 1047 erg, so rather
negligible. At first glance this is surprising given that essentially
all of the unbinding of envelope material occurs during this time
(Section 4). However, it has a simple explanation. The plunge-
in of the secondary serves to violently disrupt and energize the
outer layers of the envelope, while at the same time leading to the
secondary occupying a deeper position within the envelope, which

results in a stronger pull of the inner layers toward the centre. Thus
the gain in gas kinetic energy is offset by an increase in negative
potential energy, leading to almost zero net gain, and therefore
negligible exchange between net particle and net gas energy during
this time.

From the particle point of view, we would naively expect the
particle energy to decrease significantly during plunge-in (transfer-
ring energy to the gas), though it does not. Although the particles
are getting closer together between t = 0 d and t = 13 d, we are not
dealing here with a simple two-body problem because of the force
exerted on the particles by the gas. This interaction causes the net
particle kinetic energy to increase by almost as much as the negative
potential energy between t = 0 d and t = 13 d, resulting in zero net
change. Subsequently, after t ≈ 15 d, the particles tranfer energy to
the gas at a roughly constant rate as they spiral in closer together. In
the subsections below we expand on these points and discuss each
of the curves in the top panel of Figure 1 in detail.

3.1 Total energy

The total energy is plotted in solid black and changes by 5% between
the start of the simulation and t = 40 d (a dotted horizontal grey
line shows the initial value for reference). The total energy rises
gradually, except for a dip after t = 16.7 d corresponding to the time
that the softening radius around both particles, as well as the size
of the smallest resolution element δ, were halved. This discontinu-
ity is expected because reducing the spline softening radius from
rsoft = rsoft,0 to rsoft = rsoft,0/2 immediately strengthens the gravit-
ational force for r < rsoft,0, and thus leads to greater (in magnitude)
particle-gas potential energy components [Luke comments: wemust
compare the size of the jump with the expected value as a check.].
16% of the net increase in energy during the simulation is caused
by inflow of the ambient medium from the domain boundaries. The
remaining error may be caused by the finite time step in the simula-
tion, which leads to particle orbits that are not completely smooth,
or by small errors introduced by the multipole Poisson solver. This
small variation in the total energy does not affect the conclusions of
the present study.

3.2 Particle and gas contributions

The solid green and solid orange lines in the top panel of Figure 1
show the particle orbital energy E1−2 and total gas energy Egas,
respectively. The quantity E1−2 is equal to the sum of the quantit-
ies shown by the blue curves relating to particle-only energy terms
(namely the kinetic energies of both particles and their mutual po-
tential energy), while Egas is equal to the sumof the quantities shown
by the red and purple curves, relating to gas-only and gas-particle
energy terms, respectively. Their sum E1−2 + Egas gives the total
energy of the system Etot (solid black). By referring to the green
and orange curves we see how the orbital energy of the particles is
gradually transferred to the gas, and that this transfer starts around
the time that the plunge-in phase ends. To understand the energy
evolution in greater detail, it is necessary to study the relationships
between individual energy terms, and we do this below.

3.3 Particles

Energy terms pertaining to the particles only (RG core primary,
labeled with subscript ‘1’ and hereafter referred to as ‘particle 1,’
and secondary, labeled with subscript ‘2’ and hereafter referred to
as ‘particle 2’) are shown in blue. The kinetic energy of particle 1
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4 L. Chamandy et al.

Figure 1. Top: Evolution of the various energy components integrated over the simulation domain. Those involving only particles are plotted in blue, only gas
in red, and those involving gas and particles are plotted in purple. Total energy is shown by a black line, with its initial value plotted as a grey dashed line for
reference. Green and orange solid lines show the total particle and gas energies, respectively, with terms involving both particles and gas counting toward the
total gas energy. A discontinuity at t = 16.7 d is caused by the change in the spline softening length of both particles from 2.4 R� to 1.2 R� . The sampling rate
of the data plotted is about one frame every 0.23 d. Times of apastron and periastron passage are shown as long blue and short orange tick marks, respectively.
Bottom: As in the top panel but now showing the energy of the unbound gas only, where ‘unbound’ is defined as Egas > 0. Note the difference in vertical axis
range compared to the top panel.

Ekin,1 (dotted blue) first remains steady and then gradually rises
as the inter-particle separation reduces. It oscillates in approximate
synchrony with the orbit, with maxima in kinetic energy coinciding
with periastron passages, as would be expected. The kinetic energy
of particle 2 Ekin,2 (dashed blue) first increases during plunge-in,
which we here define as occurring between t = 8 and t = 13 d.

It then decreases rather sharply, which is explained by the fact that
the secondary initially orbits the RG (core+envelope) but eventually
orbits (roughly speaking) only particle 1 along with a small fraction
of the original envelope gas occupying the region |x − x1 | < a.
Following this decrease, Ekin,2 then rises less rapidly than Ekin,1,
as there is competition between reduced particle separation and
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Table 1. Terms in the energy budget, in units of 1047 erg, integrated over the simulation domain. Values are shown for the start of the simulation t = 0, end of
plunge-in t = 13 d, and end of the simulation t = 40 d. Also shown are the changes in the values between these times.

Energy component Symbol Expression t = 0 t = 13 d t = 40 d ∆E0−13 d ∆E13−40 d ∆E0−40 d

Particle 1 kinetic Ekin,1
1
2 M1,cv

2
1,c 0.05 0.30 0.59 0.25 0.29 0.54

Particle 2 kinetic Ekin,2
1
2 M2v

2
2 0.49 0.86 0.20 0.37 −0.66 −0.29

Particle-particle potential Epot,1−2 −GM1,cM2/a −0.28 −0.96 −1.74 −0.69 −0.78 −1.46

Gas bulk kinetic Ekin,gas
1
2
∫
ρ(x)v2

gas(x)dx 0.20 1.35 0.42 1.15 −0.93 0.22
Gas internal Eint,gas

3
2
∫
P(x)dx 2.59 2.53 2.19 −0.06 −0.33 −0.39

Gas-gas potential Epot,gas−gas
1
2
∫
Φgas(x)ρ(x)dx −2.35 −1.90 −0.93 0.45 0.97 1.41

Gas-particle 1 potential Epot,gas−1 −GM1,c
∫
(ρ(x)/ |x − x1,c |)dx −1.58 −1.40 −0.72 0.18 0.68 0.86

Gas-particle 2 potential Epot,gas−2 −GM2
∫
(ρ(x)/ |x − x2 |)dx −1.35 −2.99 −2.12 −1.64 0.87 −0.77

Particle total E1−2 Ekin,1 + Ekin,2 + Epot,1−2 0.26 0.20 −0.95 −0.06 −1.15 −1.21
Gas total Egas Ekin,gas + Eint,gas +

∑
j Egas−j −2.49 −2.40 −1.15 0.08 1.25 1.33

Total Etot E1−2 + Egas −2.22 −2.20 −2.10 0.02 0.10 0.12

Table 2.

Red giant Asymptotic giant
Energy component at t = 0 Symbol Expression ai = 49 R� ai = 109 R� ai = 124 R� ai = 284 R�

Particle 1 kinetic Ekin,1, i
1
2 M1,cv

2
1,c 0.05 0.02 0.03 0.01

Particle 2 kinetic Ekin,2, i
1
2 M2v

2
2 0.49 0.22 0.17 0.07

Particle-particle potential Epot,1−2, i −GM1,cM2/a −0.28 −0.12 −0.16 −0.07

Envelope bulk kinetic Ekin,e, i
1
2mev

2
1, i 0.20 0.09 0.07 0.03

Envelope internal Eint,e, i 4π
∫ R1

0
P
γ−1 r

2dr 1.81 1.81 0.71 0.71
Envelope-envelope potential Epot,e−e, i −(4π)2G

∫ R1
0 ρ(r)r

∫ r

0 ρ(r′)r′2dr′dr −2.13 −2.13 −0.57 −0.57
Envelope-particle 1 potential Epot,e−1, i −4πGm1,c

∫ R1
0 ρrdr −1.56 −1.56 −0.88 −0.88

Envelope-particle 2 potential Epot,e−2, i
Gm2me

ai
−1.20 −0.54 −0.37 −0.16

Particle total E1−2, i Ekin,1, i + Ekin,2, i + Epot,1−2, i 0.26 0.12 0.04 0.02
Envelope total Ee, i Ekin,e, i + Eint,e, i +

∑
j Ee−j, i −2.87 −2.32 −1.05 −0.88

Total particle and envelope E1−2−e, i E1−2, i + Ee, i −2.61 −2.21 −1.01 −0.86

Table 3.

ai LHS RHS(af = 7 R�)
[R�] [1047 erg] [1047 erg]

Eq. (3) 49 1.9 0.2αCE
Eq. (3) 109 1.9 0.6αCE
Eq. (4) 49 2.9 1.2αCE
Eq. (4) 109 2.3 1.1αCE

loss of gas mass interior to the orbit. Naturally, Ekin,2 undergoes
oscillations in phase with those of Ekin,1.

The potential energy of the system of particles Epot,1−2 (that is
excluding that due to the gas-particle gravitational forces) is shown
in dash-dotted blue, and its mean value over an orbit reduces by
about 1.7 × 1047 erg between t = 0 and t = 40 d. Its overall steady
decrease even at t = 40 d is evidence that the evolution of the system
continues unabated even as the rate of change of the mean inter-
particle separation Ûa(< 0) (where overbar denotes mean) reduces in
magnitude (Paper I) so that Üa > 0. Qualitatively, this behaviour is
as expected from the 1/a Newtonian potential which for a circular
orbit would give ÛEpot,1−2 ∝ Ûa/a2; the decrease in | Ûa| competes with
the reduction in a and whether ÜEpot,1−2 is positive or negative is not

Table 4.

ai (R�) af (R�)
αCE = 0.1 0.25 0.5 1

RGB Eq. (3) 49 0.3 0.8 1.5 2.6
λ = 1.31 109 0.4 0.9 1.7 3.1

Eq. (4) 49 0.2 0.6 1.2 2.6
109 0.3 0.7 1.5 3.1

AGB Eq. (3) 124 1.3 3.0 5.6 9.8
λ = 0.91 284 1.3 3.2 6.2 11.5

Eq. (4) 124 0.9 2.4 4.8 9.8
284 1.1 2.8 5.7 11.5

immediately obvious and will depend on the details of the orbital
evolution.

3.4 Gas

Energy terms which relate to the gas only are shown in red. The total
bulk kinetic energy of gas Ekin,gas (dotted red) rises during plunge-
in as envelope material is violently propelled outward, and sub-

MNRAS 000, 000–000 (0000)



6 L. Chamandy et al.

sequently gradually reduces as the expanding envelope is deceler-
ated by gravity and shocks. The dashed red curve shows the internal
energy of the gas Eint,gas, ofwhich about 0.8×1047 erg is contributed
by the ambient medium, which has a pressure of 1 × 105 dyn cm−2

and fills the simulation domain with side 1150 R� . On the other
hand, the ambient medium hardly contributes to Ekin,gas since the
bulk motions within it are small. Initially, Eint,gas is fairly steady,
but then undergoes relatively small variations due to expansion and
compression of gas. Both Eint,gas and Ekin,gas show small-amplitude
oscillations with maxima approximately coinciding with periastron
passages.

Each close encounter of the particles leads to a ‘dredging up’
of material in dual spiral wakes. During plunge-in, most of the res-
ulting energy imparted to the gas is in the form of bulk kinetic
energy, but the gas also receives a significant amount of internal en-
ergy, which is expected from the spiral shockmorphology observed.
The subsequent slow decrease of Ekin,gas is accompanied by a cor-
responding increase in the potential energy due to gas self-gravity
Epot,gas−gas (dash-dotted red). Of the total Epot,gas−gas, relatively
small amounts 0.2 × 1047 erg and 0.1 × 1047 erg are contributed,
respectively, by the gravitational interaction between the ambient
medium and envelope and by that of the ambient medium with it-
self. Between t = 0 and t = 40 d, a substantial amount of work
1.4 × 1047 erg is done in expanding the envelope against its own
gravity. In principle, unbinding the gas from the particles does not
necessarily require the gas to become unbound from itself. Our res-
ults show, however, that in practice much of the energy can go into
expanding the envelope against self-gravity.

3.5 Gas-particles interaction

The purple curves show the potential energy terms accounting for
the gas-particle 1 gravitational force Epot,gas−1 (dotted purple) and
gas-particle 2 gravitational force Epot,gas−2 (dashed purple). These
terms must be included in the energy budget of the envelope when
assessing the extent to which it is bound. The contribution to these
terms from the ambientmedium is rather negligible (< 0.2×1047 erg
total). Initially the inner layers of the RG are generally unaffected by
the interactionwith the secondary, which explains the slow variation
in Epot,gas−1 up until the plunge-in, when the inner part of the
envelope is strongly disrupted. After the end of plunge-in at t =
13 d, Epot,gas−1 shows an increase with time as envelope material
is transported outward. Thus, work must be done to expand the
envelope against the gravitational force toward particle 1, situated
roughly at its centre.

What is less straightforward, and sometimes neglected in
simple analyses based on the CE energy formalism, is the gravita-
tional interaction between gas and particle 2 (dashed purple). Even
at t = 0, Epot,gas−2 is important, having almost equal magnitude to
Epot,gas−1 (particle 1 is closer to the bulk of the gas but particle 2 is
more massive). However, as particle 2 plunges in toward the envel-
ope centre, Epot,gas−2 increases inmagnitude by 1.6×1047 erg and at
the end of plunge-in at t = 13 d it is the most important contribution
to the gas potential energy. From the beginning of the simulation
until the end of plunge-in, Egas gains only about 0.1 × 1047 erg,
or about 3%. Thus, the liberation of orbital energy as particle 2
plunges in does not come “for free” because with the mass M2 now
close to the envelope centre, the envelope is bound inside a much
deeper potential well. After plunge-in, from t = 13 d to t = 40 d, we
see that the envelope expands to become less bound at the expense
of the gas kinetic energy (dotted red) and particle-particle potential
energy (dash-dotted blue), and that significant work is expended in

Figure 2. Comparison between energy terms (integrated over the simula-
tion domain) in our simulation (top) and in the simulation of Ohlmann et al.
(2016) (bottom, adapted from the latter work). Legend labels are the same
as those of Ohlmann et al. (2016): ‘total’ (solid blue), ‘kinetic’ (solid yel-
low), ‘potential’ (solid red), ‘internal’ (solid green), ‘total envelope’ (dotted
blue), ‘kinetic envelope’ (dotted yellow), ‘potential envelope’ (dotted red),
‘total cores’ (dashed blue), ‘kinetic cores’ (dashed yellow) and ‘potential
cores’ (dashed red). In the upper panel the contribution from Epot,gas−2 is
included in the ‘particle potential energy,’ ‘gas potential energy’ and ‘total
particle energy’ terms, but these terms do not include the contribution from
Epot,gas−1. On the other hand, the contribution from Epot,gas−1 is included in
the total gas energy but the contribution from Epot,gas−2 is not so included.
These choices were made to obtain a high level of agreement with the results
of Ohlmann et al. (2016), where the precise allocation of each contribution
was not apparent to us.

moving gas outward against the gravitational force due to particle 2,
as well as that due to particle 1 and gas self-gravity.

3.6 Comparison with previous work

We used almost the same parameter values and initial conditions as
Ohlmann et al. (2016) and thus it is useful to compare directly their
results and ours. In the top panel of Figure 2 we plot the energy
terms as in Figure 2 of Ohlmann et al. (2016), and in the bottom
panel we show a version of their figure with the time axis truncated
at t = 40 d. The curves are as described in the legend but Ohlmann
et al. (2016) used a different kind of code and it was not clear to us
precisely how the different energy components were divided among
the various curves. We found that close agreement was obtained
if the curves labeled as “particle potential energy,” “gas potential
energy” and “total particle energy” (dashed red, dotted red and
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Energy budget in common envelope evolution 7

dashed blue, respectively) include the contribution from Epot,gas−2
but not from Epot,gas−1, and the curve denoted as “total gas energy”
includes the contribution from Epot,gas−1 but not from Epot,gas−2.
[Luke comments: Should be double-checked.]

The Ohlmann et al. (2016) setup allowed for a much lower
pressure and lower density ambient medium. Thus, to make a direct
comparison with our simulation, it was necessary to subtract from
each energy term the fraction contributed by the ambient medium
(or by the gravitational interaction between the ambientmedium and
the other components); these quantities involving the ambient gas
were assumed to remain constant for the duration of the simulation.
As expected from the analysis of Paper I, close agreement between
results from the two simulations is apparent, in spite of the very
different methodologies used. There is, however, a larger separation
between the total particle energy and total gas energy curves (shown
in dashed blue and dotted blue, respectively) after plunge-in in the
top panel of Figure 2 as compared with the bottom panel. The
particle and gas potential energies also experience larger changes
during plunge-in (dashed and dotted red, respectively).

Assuming that our partitioning of the energy componentsmim-
ics reasonably well that of Ohlmann et al. (2016), these differences
could be caused by differences in initial conditions. Firstly, in our
simulation the RG is not rotating with respect to the inertial frame
of reference of the simulation, while in that of Ohlmann et al. (2016)
the RG is initialized with a solid body rotation of 95% of the orbital
angular speed. (The reality would lie somewhere in between and
can be estimated as ∼ 30% of the orbital angular speed from the
results of MacLeod et al. 2018). In spite of this difference, however,
the inter-particle separation a reaches a smaller value (< 10 R�)
at the first periastron passage in the simulation of Ohlmann et al.
(2016) than in that of Paper I (14 R�), even though the time of this
first periastron passage (i.e. the end of plunge-in) occurs at about
t = 13 d in both simulations.

Secondly, Ohlmann et al. (2016) performed a relaxation run to
set up their initial condition, while we did not, which would have
led to differences in the initial stellar profiles (apart from the slight
differences that would have already existed due to the slightly dif-
ferent mesa models employed). We note that some quantities, like
internal energy (solid green) and total potential energy (solid red)
remain approximately constant for the first ∼ 5 d in our simulation,
while showing more variation in that of Ohlmann et al. (2016). This
suggests that the RG is more stable in our simulation. Part of the
reason could be that we iterated over the RG core mass to obtain a
smoother initial RG profile, and part of the reason could be that we
used a denser and higher pressure ambient medium to stabilize the
outer layers of the RG. The broad practical implication of the latter
compromise is well-known: obtaining an initial condition that is
both highly stable and physically realistic in CE simulations is com-
putationally challenging. We expand on the numerical challenges
involving the ambient medium in Section ??.

In any case, we are encouraged by the close agreement between
the two simulations, and take this as confirmation that our results
are physical.

4 PARTIAL ENVELOPE UNBINDING

When evaluating the extent to which the envelope is unbound, it is
important to be precise about the meaning of the term ‘unbound.’
We call the gas at a certain location in space and time unbound if its
overall energy density, equal to the sum of bulk kinetic, internal and
potential (due to self-gravity and interactions with both particles)
energy densities is greater than or equal to zero, that is Egas > 0.

Figure 3. Change in unbound mass of the envelope with time according to
the fiducial definition of ‘unbound,’ E > 0 (solid blue), as well as various
alternative definitions labeled in the legend (see Section 4). More precisely,
∆Munb represents the change in unbound mass with respect to the initial
value of the unbound mass for the fiducial definition.

This definition is somewhat arbitrary and can thus be debated, butwe
have chosen a simple definition that is also common in the literature.
For example, one could be more conservative by excluding the
internal energy density, or more liberal by replacing the internal
energy density by the enthalpy density, which is the sum of internal
energy density and pressure (Ivanova et al. 2013, and references
therein).

As we explain below in more detail, virtually all of the unbind-
ing of material happens between the start of the simulation and end
of the plunge-in phase. That this happens in spite of the negligible
energy transfer between particles and gas during this time (Sec-
tion 3) is counterintuitive, but can be explained by noting that the
energy transfer between particles and gas is highly inhomogeneous
within the envelope, as will become apparent in Section 4.2.

4.1 Unbound mass

In Figure 3 we plot the change in the unbound mass as a function of
time (solid blue). Mass becomes unbound at an increasing rate from
the start of the simulation until the end of plunge-in, after which the
amount of unbound mass abruptly levels off. This behaviour is very
similar to that obtained by Iaconi et al. (2017) in their phantom
simulation (see their Fig. 9, top panel for results from the run with
the most comparable setup to ours; see also Iaconi et al. 2018).
By t = 40 d the total unbound mass ∆Munb ≈ 0.22 M� or about
14% of the envelope mass, which happens (somewhat by chance)
to be almost the same fraction obtained by Iaconi et al. (2017),
who obtained 13%. Ohlmann et al. (2016) obtain a somewhat lower
value of 8% by the end of their simulation. As they find that most
of this is ejected during the first 40 d, the difference between their
simulation and ours is again likely caused by the slightly different
initial conditions.

Although the total gas energy Egas hardly changes between
t = 0 and the end of plunge-in at t ≈ 13 d (Section 3), this is
the time when most of the unbinding of mass happens. The reason
must be that the energy density of the gas does not change by the
same amount everywhere; some of the gas gains energy while the
remainder loses energy, such that the net change is almost zero. To
understand this in more detail, we discuss the spatial variation of
the energy density in Section 4.2.
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The other lines in Figure 3 represent changes in unbound mass
using alternative definitions of ‘unbound.’ The reason that some
of these curves do not start from ∆Munb = 0 at t = 0 is that for
presentional convenience we chose to subtract the unbound mass
in the ambient medium under the standard definition of ‘unbound’
from each of the initial values of the unboundmass in the simulation.
Thus, ∆Munb represents the change in unbound mass with respect
to the initial value of the unbound mass for the standard definition
of ‘unbound,’ that is Egas > 0. More liberal definitions plotted are
Egas − Epot,gas−gas > 0 (exclusion of self-gravity; orange dashed),
Egas +P > 0 (replacement of internal energy density with enthalpy
density; red dashed-dotted), and ECM1−2

gas > 0, where the left-hand-
side is the gas energy density in the frame of the particles’ centre
of mass (blue dashed-double-dotted; we motivate this choice in
Section 4.5). A more conservative definition is E − Eint,gas > 0
(exclusion of the internal energy density; green dotted). If one adopts
one of the more liberal prescriptions, one obtains ∆Munb ≈ 0.3 M� ,
or about 19% of the total envelope mass. However, the values of
∆Munb corresponding to Egas + P > 0 and ECM

gas > 0 are rising at
the end of the simulation.

It has been argued previously that energy deposition occurs
only outside the orbit of the particles (Ivanova & Nandez 2016).
While the gas in between the particles is, in fact, affected by the
interaction in our simulation, as is clear from the morphology seen
in 2D slices of density or energy (see Section 4.2), it could perhaps
still be argued that the interaction with material outside the orbit is
stronger than with material inside the orbit. Then when calculating
the unbound mass fraction it is interesting as an alternative to con-
sider only the mass of the envelope that is exterior to the particle
orbit, that is, to exclude the mass of gas within a sphere of radius a
centred on particle 1. (We emphasize that the radius a of this sphere
that demarcates the regions interior and exterior to the orbit is con-
tinuously changing with time.) When the calculation is done in this
way, we find that ??% of the mass exterior to the orbit is unbound
at t = 13 d, when the exterior mass comprises about 77% of the gas
mass, and ??% of the exterior mass is unbound at t = 40 d, when the
exterior mass accounts for about 97% of the gas mass. The material
interior to the particle orbit is itself strongly bound, with ??% of
the interior mass bound at t = 13 d and ??% bound at t = 40 d. The
total gas energy interior to the orbit at t = 13 d is −1.2× 1047 erg or
about 48% of the total gas energy, while at t = 40 d, the gas interior
to the orbit has energy −0.3 × 1047 erg or about 22% of the total
gas energy. [Luke comments: Must fill in and check these numbers,
needs a brief conclusion]

4.2 Spatial analysis

[Luke comments: Our analysis is not yet complete and in particular
we need to understand the movie corresponding to Figure 6. To do
so, we are going to plot several movies side-by-side, including gas
density, Mach number, as well as each of the terms in the gas energy
density (bulk kinetic, internal, potential with particle 1, potential
with particle 2 and self-gravity). The same will be done for the slice
orthogonal to the orbital plane and intersecting both particles, and
also for the slice orthogonal to both that plane and the orbital plane
and intersecting particle 2.]

In order to interpret Figure 3 and gain insight into the partial
unbinding of the envelope, we explore the spatial distribution of
energy and its variation with time. Figure 5 shows snapshots of the
absolute value of the energy density of gas |Egas | in slices through
the orbital plane at times t = 0, 10, 20 and 40 d. Recall that mass is
defined to be ‘bound’ when the total energy density Egas < 0 and

‘unbound’ when Egas > 0. The dark lines on the plot (highlight-
ing regions of very low |Egas |) thus represent transitions between
bound and unbound material. Contours show the gas density [Luke
comments: Must update the figure and complete the discussion of
the figure.]

It is helpful to define a normalized energy density Egas,norm =
Egas/max(Ekin,gas + Eint,gas, −Epot,gas) (where Epot,gas =

Epot,gas−1 + Epot,gas−2 + Epot,gas−gas), so that Egas,norm = −1 cor-
responds to maximally bound material while Egas,norm = 1 corres-
ponds to maximally unbound material. Slices through the orbital
plane are plotted in Figure 6, with bound material coloured red
and unbound material blue. Initially, much of the ambient mater-
ial is unbound as a conseqence of its large internal energy density
and relatively large distance from the concentration of mass near
the centre of the domain. The second snapshot at t = 10 d shows
that gas...during plunge-in....[Luke comments: complete discussion
while staring carefully at sequence of figures...]

In Figure 7 we again plot Egas,norm, but now for a sequence of
equally spaced snapshots beginning just after plunge-in at t = 13.0 d
and ending at about 14.4 d. Snapshots are zoomed in on the central
200 R� and are shown in the reference frame centred on particle 2
(softening sphere marked in green) and corotating with the orbit
of the particles, so that particle 1 is situated to the left of centre
(softening sphere in black). Gas in the wake of particle 2 that is
unbound/blue at t = 13 d apparently transitions to being bound/red
by t = 14.4 d. This explains the decline in ∆Munb after t ≈ 13 d
seen in Figure 3. [Luke comments: NEEDS closer study of figures.]

4.3 Efficiency of partial envelope removal

Aswe saw in Section 3, orbital energy of the particles is converted to
gas energy with the total energy conserved to within 5% during the
simulation, and this is encapsulated by the green (particle energy),
orange (gas energy) and black (total energy) lines in the top panel
of Figure 1. However, not all of the particle orbital energy released
goes into unbinding the envelope because some of it goes into
increasing the energy ofmaterial that is already unbound (Egas > 0).
Since unbound material will never have exactly zero energy density,
there is always an efficiency associated with the energy transfer
process (see also Section 5, where we discuss the energy formalism
involving the efficiency parameter αCE). To get an idea about how
much energy is ‘wasted’ in this respect, we plot various energy
components with time for gas that is unbound in the bottom panel
of Figure 1. From the orange line, we see that during the simulation
about 0.2×1047 erg of energy is gained by the unbound gas. Granted,
the mass of unbound gas increases during the first ∼ 13 d, and as
our code is Eulerian, individual fluid elements cannot be tracked, so
it is not possible to say whether some of the unbound gas becomes
bound at a later time. In spite of these caveats, it is interesting to
estimate the fraction of the liberated particle orbital energy that is
transferred to unbound gas. As the change in gas energy during the
simulation is 1.3 × 1047 erg, the fraction that ends up in unbound
gas is about 15%.

Let us now try to understand this in more detail. We see from
the bottom panel of Figure 1 that most of the increase in energy of
the unbound material occurs in the first 13 d. This is consistent with
the change in the unbound mass ∆Munb also peaking at t ≈ 13 d.
The energy transferred is mainly in the form of kinetic energy, as
material is launched outward during plunge-in. Subsequently, the
unbound gas, whose mass remains almost constant after t = 13 d,
transfers kinetic energy to internal energy and potential energy as it
expands.

There is another way in which energy transfer to the en-
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Figure 4. Density, in g cm−3 in a slice through the secondary and parallel to the xy (orbital) plane, for Model A (no subgrid accretion model). The secondary
is positioned at the centre with the frame rotated so that the primary particle is always situated to its left (the plotted frame of reference is rotating with the
instantaneous angular velocity of the particles’ orbit). Both particles are denoted with a green circle with radius equal to the spline softening length. Snapshots
from left to right are at t = 0, 10, 20 and 40 d. [Luke comments: Copied from Paper I.]

Figure 5. Snapshots showing log |Egas | at t = 0, 10, 20 and 40 d. [Luke comments: Change numbers on color bar.]

velope is inefficient. To expand, the envelope must displace am-
bient material, which has significant pressure and mass in our
simulation. Work must be done by the envelope both against
thermal pressure of the ambient material and also against gravity.
These terms can respectively be estimated as ∼ (4π/3)Pambr3

f and
∼ (4π/3)Gr2

f (M1+M2)ρamb, where Pamb = 1×105 dyn cm−2 is the
ambient pressure, ρamb = 7 × 10−9 g cm−3 is the ambient density,
M1 = 2 M� is the primarymass, M2 = 1 M� is the secondarymass,
and rf ∼ 3 × 1013 cm is the radius of the envelope at t = 40 d. With
these expressions we obtain ∼ 0.1 × 1047 erg for each work term.
Thus, ∼ 0.2×1047 erg may have been transferred from the envelope
to the ambient medium during the course of the simulation. This is a
small amount compared to the total envelope energy, but we expect
that the expansion of the envelope would have been slightly faster

with a less dense or lower pressure ambient medium.1 In any case,
since we have analyzed the gas energy budget (envelope + ambient)
as a whole, the energy transfer between these two components is
unlikely to affect any of our conclusions. For a real star, we would
expect the pressure and mass of ambient material to be less signific-
ant, though if the ambient material consists of material ejected by a
stellar wind that preceded the CE interaction, then energy transfer
between the envelope and ambient medium may not be negligible.

1 Indeed we noticed a slight increase in the size of the envelope structure
during plunge-in for a simulation which had initial ambient density ρamb =
1.0 × 10−10 g cm−3 compared to a simulation that was otherwise the same
but with ρamb = 6.7 × 10−9 g cm−3, as in the present work (respectively
Models G and E described in Appendix A of Paper I). Reassuringly, the
particle orbits were almost identical up to the end of the former simulation
at t ≈ 10 d.
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10 L. Chamandy et al.

Figure 6. Snapshots of Egas/max(Ekin,gas + Eint,gas, −Epot,gas), where Epot,gas = Epot,gas−1 + Epot,gas−2 + Epot,gas−gas, in the orbital plane at t = 0, 10, 20 and
40 d. A value of 1 corresponds to a maximally unbound system, while a value of −1 corresponds to a maximally bound system, for our standard definition of
‘unbound’: Egas > 0. Particle 1 is shown by a black dot, while particle 2 is shown by a red dot [Luke comments: Change number format, use large circles for
particle contours, different colors for these circles.]

Figure 7. As Figure 6 but now showing a sequence of snapshots separated by about 0.5 d starting at t = 13.0 d. Softening spheres are shown as black and green
circles for particles 1 and 2, respectively. [Luke comments: Should thicken contour to make more visible and possibly also enlarge size to twice the softening
radius. Formatting as in Figure 6.] The part of the wake of particle 2 in the central part of the envelope transitions from blue (unbound) to red (bound) during
this time. [Luke comments: This plot should be in the co-orbiting reference frame so that can more easily compare snapshots by eye.]
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4.4 Timescale for ejecting the envelope and fate of the
remnant

From the above analysis we can make the following two general
conclusions: (i) the rate of unbinding is approximately zero at the
end of the simulation (for the standard definition of ‘unbound’), and
has generally been small since the end of plunge-in at t ≈ 13 d; and
(ii) the average rate of energy transfer from the particles to the gas
is approximately constant at the end of the simulation, and equal to
about 0.03×1047 erg d−1 (final average slope of orange curve of top
panel of Figure 1). Of this transfer rate, about 0.001× 1047 erg d−1,
a negligible fraction, is being tranferred from the particles to gas
that is already unbound (final slope of orange curve of bottom panel
of Figure 1). Thus, although the envelope continues to gain energy
at a relatively high rate, this energy is being gained by material that
is still bound by the end of the simulation.2 Assuming this energy
transfer rate of 0.03× 1047 erg d−1 were to continue into the future,
one can estimate how long it would take for the gas to attain zero
total energy, and we find it would take an additional 38 d. However,
this calculation includes the energy of the ambient medium, which
initially has a net positive energy of Eamb ∼ 0.5×1047 erg. Thus, we
subtract this ambient energy from the value of Egas at t = 40 d given
in Tab. 1 to give an envelope gas energy Ee ∼ −1.65×1047 erg, and
thus the additional time needed for the envelope to attain Egas = 0
would be about 55 d.

Now, from Section 4.3 we know that not all of the liberated
particle orbital energy will be transferred to bound material, and
that this leads to an efficiency factor ε , found to be about 85% in
the first 40 d (that is, 15% of the energy gets ‘wasted’). Assuming
an efficiency of ε = 0.85 for the remainder of the evolution, the
time calculated above must be divided by ε , giving ∼ 65 d. With an
efficiency of only 10%, the released orbital energy would have to be
about 16.5 × 1047 erg, and the timescale for ejecting the envelope
would be∼ 550 d, or about 1.5 yr, still very short compared to upper
limits obtained from observations [Luke comments: REF?].

The orbital energy of the particles at t = 40 d is about
E1−2(40 d) = −0.95 × 1047 erg (Tab. 1). Then, since the orbit is
expected to remain roughly circular, we can write

af ∼
GM1,cM2

2

(
Eamb − Egas(40 d)

ε
− E1−2(40 d)

)−1
. (1)

Putting ε = 1 gives the upper limit af ∼ 2.9 R� , while for ε = 0.85
we obtain af ∼ 2.6 R� and for ε = 0.1 we obtain af ∼ 0.4 R� .

Using the following estimate of the Roche-lobe radius
(Eggleton 1983)

rL =
0.49q2/3a

0.6q2/3 + ln(1 + q1/3)
, (2)

where q = M1,c/M2 ≈ 0.38, we estimate the Roche radius of the
secondary to be rL ∼ 0.3a. Thus, for ε = 1, 0.85 and 0.1, we would
have rL ∼ 0.9 R� , 0.8 R� and 0.1 R� , respectively. This would
imply that mass transfer by Roche-lobe overflow would occur if the
secondary was a main sequence star, but not if it was a WD.

[Luke comments: Comment on what would happen after RL
overflow.]

In the simulation of Ohlmann et al. (2016), the rate of decrease
of orbital energy of the particles reduces with time, and is much
smaller at the end of their simulation at t ∼ 130 d than at t = 40 d.

2 This explanation assumes that bound (unbound) material after t ≈ 13 d
has for the most part remained bound (unbound). This assumption seems
reasonable after studying the evolution of the 2D distribution of energy; see
also Section 4.2.

Figure 8. Top: Motion in orbital plane of the particle CM (blue), gas CM
(red) and net system CM (green). The position of the system CM moves
gradually in the −y direction during the course of the simulation. Bottom:
Evolution of the speed relative to the reference frame in which the simulation
is carried out, for the particle CM (blue), gas CM (red) and net system CM
(green).

This would suggest that the assumption that the rate of decrease of
orbital energy remains constant is far too optimistic. On the other
hand, the results of Paper I suggested that simulations of CEE may
not be converged with softening length rsoft (see also Iaconi et al.
2018), as it was seen that when rsoft was decreased to ensure that the
arbitrary constraint rsoft < a/5 (also employed by Ohlmann et al.
2016) was satisfied, there was a marked increase in the mass flow
toward the secondary, and a shift to a tighter orbit compared to the
other simulation studied, for which rsoft was not reduced. Thus, the
above estimates for the timescales for envelope ejection may not
be overly optimistic after all. In any case, numerical studies that
test convergence with softening length and resolution are, in our
opinion, needed in order to make progress in this regard.

4.5 Motion of the centre of mass of the particles and
relevance for PN-central star offsets

One caveat in our definition of ‘unbound’ is that it does not take
into account the relative motion of the particle binary system and
the disrupted envelope gas. The reason this might be important is
that fundamentally we are interested in the extent to which gas is
bound to the particles. In the above analysis, the kinetic energy of
the particles and bulk kinetic energy of the gas are given in the
inertial reference frame of the simulation, which, assuming perfect
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12 L. Chamandy et al.

conservation of linear momentum (see below) is the centre of mass
(CM) reference frame of the system. In general, however, the CM
of the particles and that of the gas are in relative motion, moving
in opposite directions in the simulation frame such that overall
linear momentum is approximately conserved. Given the significant
asymmetry of the gas distribution in the orbital plane, and its rapid
evolution with time, we might expect significant relative motion of
the particle and gas centres of mass, and this is indeed the case.
Moving to the reference frame of the particle CM, and neglecting
non-inertial effects, one sees that the bulk kinetic energy of gas
would be evaluated as ECM1−2

kin,gas =
1
2
∫
ρ(x)|v(x) − vCM,1−2 |

2dx.
This alternative definition wouldmean that gas whose speed relative
to the particle CM is larger (smaller) than its speed relative to the
systemCM ismore (less) unbound.On thewhole, since the envelope
CM and particle CM are moving in opposite directions, one expects
this to lead to an increase in the total mass of unbound gas, as
confirmed by comparing the dashed-double-dotted blue and solid
blue lines in Figure 3.

We present data for the motion of the particle CM and gas
CM in Figure 8, which shows the path traced in the orbital plane
by the particle CM (blue), gas CM (red), and system CM (green)
in the top panel, and their respective speeds as a function of time
in the bottom panel. As expected, the position of the system CM is
approximately constant, and its speed is at all times is very small
(< 0.2 km s−1); deviations in the position imply the presence of
small errors in linear momentum conservation. [Luke comments:
Must redo this plot for full resolution data. The discrepancy cannot
be accounted for by inflow from the boundary for the de-resolved
analysis. We know that non-conservation of mass is accounted for
by inflow.] We now turn to the bottom panel, where the speed of the
particle CM is plotted against time in blue, that of the gas CM in
red, and that of the system CM in green. We see that until the end of
the plunge-in phase at t ≈ 13 d, the relative speed between the gas
CM and particle CM (obtained by adding the red and blue curves)
is 53-71 km s−1, and the final relative speed is about 5 to 6 km s−1.
This relative motion leads to a small but non-negligible increase in
the gas bulk kinetic energy, and hence the mass of unbound material
(if this alternative definition of ‘unbound’ is adopted). Although this
effect is relatively unimportant in the present context, it could be
more important in other contexts, and should be accounted for.

Another, different effect of this relative motion between gas
CM and particle CM is even more interesting. In several bipolar
PNe, it has been observed that the binary central star is offset from
the centre of the PN, and it is believed that these offsets are caused
by the binarity (e.g. MyCn 18: Sahai et al. 1999; Clyne et al. 2014;
Miszalski et al. 2018; Hen 2-161: Jones et al. 2015; Abell 41: Jones
et al. 2010). The best studied example is the Etched Hourglass Neb-
ula MyCn 18, and various possible explanations have been explored
to explain the offset of the PN central star from the geometric centre
of the nebula, but all of these are found to fail (Miszalski et al. 2018,
and references therein).

The observed distance to MyCn 18 is 618 ± 101 au (Miszalski
et al. 2018) and the estimated time since the end of the CE phase is
∼ 2700 yr (Clyne et al. 2014; Miszalski et al. 2018). This implies
a mean velocity of ∼ 1 km s−1 of the PN central star with respect
to the nebula in the plane of the sky, if the motion started at the
end of the CE phase. Thus, the velocities we obtain for the particle
CM at the end of our simulation of ∼ 4-6 km s−1 (relative to the
inertial frame and to the envelope CM, respectively) are of the same
order of magnitude. The direction of the offset is within 5◦ of the
PN minor axis, which presumably is parallel to the orbital plane of
the binary. This agrees with the motion of the particle CM in our

simulation, whose velocity in the z-direction perpendicular to the
orbital plane has magnitude 6 0.3 km s−1 during the simulation,
with average z-velocity only −6 × 10−3 km s−1 between t = 30 d
and t = 40 d. We might expect the velocities in the MyCn 18 system
to be smaller than in our simulation since the binary components are
less massive (Miszalski et al. 2018 obtain primary and secondary
masses of 0.6±0.1 M� and 0.19±0.05 M� respectively, whereas in
our cases the particle masses are M1,c = 0.4 M� and M2 = 1 M�).
On the other hand, we are seeing only a plane of the sky projection,
so the full 3D offset may be somewhat larger, which would imply a
correspondingly larger velocity for the central star in MyCn 18. In
any case, the relative motion between the particle CM and envelope
seen in our simulation, caused by the asymmetry in the morphology
of the disrupted CE in the orbital plane, leads to velocities in the
orbital plane comparable to those needed to explain the offsets of PN
central stars. We therefore propose this as a possible mechanism for
such offsets, but more work is need, for example, efforts to simulate
specific systems such as MyCn 18.

5 ENERGY FORMALISM AND αCE PRESCRIPTION

A popular approach for studying the CE phase is by means of the
so-called energy formalism. Here we focus on the prescription from
the review Ivanova et al. (2013) [equivalent to their equation (3)]:

GM1M1,e
λR1

= αCE
GM1,cM2

2

(
1
af
−

M1/M1,c
ai

)
, (3)

where M1,e = M1 − M1,c, the quantities αCE and λ are parameters,
subscripts i and f stand for initial and final, respectively, and for the
formula to be valid ‘final’ refers to the time at which the envelope
becomes completely unbound (eliminating the drag, and thus halting
the inspiral). On the left-hand-side (LHS) we have the envelope
‘binding energy,’ which includes the negative of the potential energy
due to the gas-particle 1 gravitational interaction as well as that
due to gas self-gravity. This involves the parameter λ, which can
be calculated from first principles provided the envelope density
profile is known.3 The definition of ‘binding energy’ in this context
may also include the negative of the envelope internal energy, in
which case the equation of state must also be known to compute
λ (below we assume that the internal energy is included in the
binding energy). The right-hand-side (RHS) is the energy that is
used to unbind envelope gas, and is equal to the negative of the
change in the orbital energy of the system between t = ti when
a = ai and t = tf , when a = af , multiplied by the efficiency αCE.
Even if we assume that all sources and sinks of energy have been
accounted for, we expect αCE < 1 because unbound material will
in general have Egas > 0, not Egas = 0 (see also Section 4.3).

We hereby propose the following alternative prescription:

GM1,e

[
M1
λR1
+

M2
2ai

(
2 −

M2
M1 + M2

)]
= αCE

GM1,cM2
2

[
1
af
−

1
ai

(
2 −

M2
1 /M1,c + M2

M1 + M2

)]
.

(4)

With the intention of making the equation more intuitive and logical
from an accounting standpoint, we have kept all terms contributing
to Egas on the LHS, and all terms contributing to E1−2 on the RHS.4

3 Alternatively,λ can be combinedwithαCE, resulting in a single parameter
λαCE.
4 In this section we do not differentiate between ‘gas’ and ‘envelope’; that
is we neglect contributions from the ambient medium. When we apply the
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Equation (4) makes use of the relations v2
1 = Gµm2/(am1) and

v2
2 = Gµm1/(am2) for the particle speeds in the inertial CM frame
in the standard two-body problem, assuming a circular orbit and
with µ = m1m2/(m1 + m2) the reduced mass. The difference from
equation (3) is that the initial orbital energy involving the envelope
and particle 2 is now on the LHS, and does not get multiplied by
αCE. As a result, equations (3) and (4) are equivalent if and only if
αCE = 1. Thus, equation (4) tells us how particle energy has been
convertedwith an efficiencyαCE into gas energy during the envelope
unbinding process. The orbital energy Ekin,gas,i + Epot,gas−2,i < 0
contributes to the negative binding energy of the envelope, and
thus multiplying it by αCE, as done in equation (3), is not, in our
view, well motivated. Doing so implies an effective reduction in the
overall binding energy, so that using equation (3) underestimates
the energy required to unbind the envelope. As we discuss in the
next section, equations (3) and (4) tend to lead to similar results in
practice.

5.1 Applying the energy formalism

Now thatwe have summarized the energy formalism,we can use it to
assess whether the simulation results are consistent with theoretical
expectations. To apply the formalism, we have evaluated the various
energy terms of Tab. 1 at t = 0, but now for the envelope alone
excluding the ambient medium. The values are listed in the fourth
column of Tab. 2. Where there is a small difference between a value
from Tab. 2 and the corresponding value in the fourth column of
Tab. 1, we have verified that it is accounted for by the energy in the
ambient medium.

To proceed, we first evaluate the left-hand and right-hand sides
of equations (3) and (4), for ai = 49 R� and af = 7 R� , which
is the approximate mean inter-particle separation at t = 40 d. For
the RG in our model, λ evaluates to 1.31. Technically speaking,
equations (3) and (4) are only relevant if af corresponds to the inter-
particle separation after the envelope is completely unbound. Since
this is not the case at t = tf in the simulation, we cannot use the
simulation along with equation (3) or (4) to obtain αCE. However,
we can check whether we should expect the envelope to be unbound
at a = 7 R� , given a reasonable estimate for αCE.

The LHS and RHS of equations (3) and (4) for the simulation
are given in Tab. 3, in the first and third rows, respectively. We see
that for the LHS and RHS to be equal, a value of αCE larger than 1,
and somewhere in the range 2–5, would be required. Since αCE > 1
would be unphysical, this implies that we should not expect the
envelope to be unbound at a = 7 R� , which is consistent with the
simulation results. Thus, that complete envelope unbinding has not
been attained by the end of the simulation should not be taken as
evidence that the simulation is somehow deficient. On the contrary,
the simulation and the theory are in agreement.

In a real system, it may be preferable to associate the initial
state at t = ti with the Roche lobe overflow stage, which occurs
just prior to CEE (MacLeod et al. 2018). This would imply a larger
value of ai, which would lead to smaller contributions from the
terms (∝ 1/ai) that differ between equations (3) and (4). For the
system studied in this work, the Roche limit can be estimated from
equation (2) to be ai ≈ 109R� , which would lead to a reduction
in ai-dependent terms by more than a factor of two. Values of the
initial energy terms for ai = 109 R� are given in the fifth column
of Tab. 2. In the second and fourth rows of Tab. 3, we present the

energy formalism to interpret the simulation in the next section, we exclude
the ambient medium.

LHS and RHS for this larger initial separation, for equations (3) and
(4), respectively. Increasing the initial separation results in more
orbital energy that can be tapped by the envelope, making it easier
to unbind, and hence leading to a smaller required αCE. However,
the difference from the case where ai = 49 R� can be seen to be
rather small, and anywayαCE > 1would still be required. Therefore,
failure to unbind the envelope at a = af ≈ 7 R� does not stem from
neglecting the extra orbital energy that would be gained by starting
with a = ai = 109 R� instead of 49 R� . We can conclude that
to achieve unbinding, one would presumably have to wait until a
decreases to a considerably smaller value. Let us now estimate this
final separation.

5.2 Predicting the final inter-particle separation

It is possible to predict the value of af for our system for a given value
of αCE. To do this, we can use either equation (3) or equation (4),
with either ai = 49 R� (simulation) or ai = 109 R� (Roche limit).
The values are given in the top half of Tab. 4 for a set of plausible
choices for αCE between 0.1 and 0.5, as well as for αCE = 1, for
comparison. Tab. 4 tells us that we do not expect envelope ejection to
occur until a has reduced to less than 3 R� , and likely less than 1 R� .
This is much smaller than the final separation in our simulation, but
also smaller than that of Ohlmann et al. (2016), who used very
similar initial conditions and evolved the system to t ∼ 130 d, at
which time a ≈ 4 R� . Thus, it is not surprising that the envelope
did not eject in the simulation of Ohlmann et al. (2016) either.

The implication is that to get the envelope to eject, one should
wait longer for the separation to reduce further. This possibility was
considered in Sec. 4.4, where it was pointed out that even at the
end of the simulation at t = 40 d, energy was being tranferred from
particles to gas at an almost steady average rate (see also Fig. 1),
and that if this were to continue to late times, the envelope might
be ejected by ∼ 102–103 d, still small enough to account for obser-
vations of PPNe, which have ages > 103 yr [Luke comments: must
check]. The scenario envisioned by Clayton et al. (2017) wherein
fallback of envelope material occurs, leading to multiple successive
CE phases, could also play a role in unbinding the envelope over
long timescales [Luke comments: must check that paper for de-
tails]. Nevertheless, the orbital separation does appear, from Fig. 1
of Ohlmann et al. (2016), to be approaching an asymptotic value,
while the energy transfer rate reduces with time (their Fig. 2). This
suggests that running the simulation for longer might not actually
lead to envelope unbinding, but they estimate that it would take
∼ 100 yr to eject the envelope if unbinding was to continue at the
final rate. Although such long timescales cannot a priori be ruled
out, there is no guarantee that the envelopewould eject on even these
timescales. [Luke comments: Can it be argued from observations
of CE (luminous red novae) that the timescale must be short in at
least some cases? Must look into this.] Thus, it is worth considering
alternative explanations.

6 LIMITATIONS OF SIMULATIONS AND
IMPLICATIONS FOR ENVELOPE UNBINDING

Simulations have not yet resulted in the envelope becoming unbound
without invoking an additional energy source, namely recombina-
tion energy (Nandez et al. 2015; Nandez & Ivanova 2016; Ivanova
& Nandez 2016). Without recombination energy, the envelope is
typically unbound at a level of only ∼ 10% of its mass by the end
of the simulation. Incorporation of the recombination energy was
implemented using a simple subgrid prescription that assumes that
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the latent energy released by recombination is absorbed locally, and
does not account for transport of energy by radiation or convection.
The extent to which this assumption is justified is currently being
vigorously debated (Sabach et al. 2017; Grichener et al. 2018; Ivan-
ova 2018). Another candidate for an additional energy source is the
fraction of the gas energy that is released to the envelope as gas
accretes onto the secondary (Soker 2004; Nordhaus & Blackman
2006; Ricker & Taam 2008, 2012; MacLeod et al. 2017; Murguia-
Berthier et al. 2017; Soker 2017; Shiber & Soker 2018; Chamandy
et al. 2018) [Luke comments: please insert other references if re-
quired] but it is not yet clear whether such accretion would be
quenched by feedback.

Although sources (or sinks) of energy not included in our
simulation may play a role, we feel that an effective approach is to
first evaluate more mundane explanations before appealing to new
physical ingredients, when these ingredients have not, in our view,
conclusively been shown to be important. With this in mind, we
sketch the following narrative, involving numerical limitations, and
the non-optimal region of parameter space simulators are “pushed
into” by such limitations, as a possible explanation for why complete
envelope unbinding has so far not been reported in simulations
without extra energy sources.

6.1 Numerical limitations

As global CE simulations are numerically highly demanding,
modelers have so far focused on a similar region of parameter space,
involving low-mass RGB primaries. However, as we have argued in
Sec. 5.2, supported by the results presented in Tab. 4, the final sep-
aration needed to eject the envelopes in such systems is likely to
be . 1 R� . The softening length tends to be & 1 R� , and when
the softening length was halved at t = 16.7 d in our simulation,
from 2.4 R� to 1.2 R� , there was a significant effect on the orbit
and mass inflow toward the secondary, even though a exceeded five
softening lengths at that time (the same universal criterion used by
Ohlmann et al. 2016). This suggests that our simulation is not fully
converged with respect to the softening length. A similar conclu-
sion was also reached by Iaconi et al. (2018) with respect to their
simulations. It also suggests that decreasing the softening length
during the simulation may lead to significant differences, e.g. in the
orbit, compared to a more accurate but hypothetical simulation for
which the softening length was kept constant at its smallest value
from t = 0.5

Convergence studies are needed to establish the importance
of numerical effects. It is possible that a too-large softening length
or inadequate resolution near the particles can lead to an artificial
stagnation of Ûa for small a, and that for real systems a would decay
more rapidly than in the simulations, eventually leading to either
envelope expulsion or a merger. The idea that numerical limitations
could be stalling the orbital decay is supported to some extent by
the comparison of final separations for simulations and observations
compiled from the literature and presented in Fig. 15 of Iaconi et al.
(2017). However, that explanation is unlikely to be the whole story.

5 The latter is difficult to achieve in practice since the volume resolved at the
highest refinement level tends to be higher at the beginning of the simulation
and the softening length must be resolved by someminimum number of cells
to avoid other numerical problems, like less accurate energy conservation.

6.2 Parameter space limitations

Asmentioned above, simulations tend to focus on systems involving
RGB primaries, which are more compact than their AGB counter-
parts, and hence have a larger binding energy. It follows that the
final separation needed for envelope ejection for CEE involving an
AGB primary should be significantly larger than for CEE involving
an RGB primary. To explore this possibility, the energy terms for an
AG from the same ZAMS 2 M� MESA (Paxton et al. 2011, 2013,
2015) simulation were evaluated and are presented in the sixth and
seventh columns of Tab. 2 for an initial separation just outside the
AG surface or at the Roche limit separation, respectively. That is,
ai = 124 R� (compared to the AG radius of 122 R�) or 284 R� ,
computed from equation (2). The AG density and pressure profiles
were calculated using the same procedure as for the RG, and with
the same core cutoff radius of 2.4 R� (chosen to be equal to the
softening length; see Ohlmann et al. 2017; Chamandy et al. 2018
for details). This results in an AG of mass 1.8 M� with a 0.5 M�
core (compared to 2.0 M� and 0.4 M� for the total mass and core
mass of the RG). The total initial energy of the envelope is indeed
much smaller in magnitude for the AG than for the RG (this is also
helped by the larger initial separation ai).

Next we turn to the predicted values of af for given values
of αCE in Tab. 4. We see that af is predicted to be almost four
times larger for CEE involving the AGB star than for the RGB star.
Assuming αCE ∼ 0.2–0.3 [Luke comments: need estimate from
literature perhaps], this would suggest that most of the close low
mass binary systems observed to have orbital separations > 1 R�
are evolved from systems involving AGB, rather than RGB, stars. A
caveat is that we have not considered how this result would depend
on the parameter values, which can vary considerably depending on
the giant and secondary masses. [Luke comments: Insert small α
asymptotic limit and discuss dependence on various parameters.]

Another caveat is that to make a statement about the likeli-
hood of a given system being the progenitor of an observed system,
one must possess knowledge about the prior relative likelihood of
progenitor systems. Let us assume the distribution of binary stellar
separations for systems that will result in a CE phase to be approx-
imately flat....[Luke comments: need to find this from literature]. If
the ratio of AG to RG radius is 2.5, as it is for the example of a
ZAMS 2 M� star used in this work, then we would expect the ratio
of CE systems involving an AGB star to those involving an RGB
star of the same ZAMS mass to be of the order (2.5− 1)/1, or 3 : 2.
[Luke comments: Comment on stars of a different ZAMS mass,
using literature estimates of the radii] Thus, our tentative conclu-
sion that most systems with a > 1 R� have evolved from primary
systems involving AGB stars gains support.

6.3 The challenges of simulating CEE involving AGB stars

7 SUMMARY AND CONCLUSIONS
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