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1 Aims

• Conserve energy (bulk kinetic+thermal+gravitational potential) to machine precision.

• This was done without particles so that gravitational PE is only due to self-gravity by Jiang et al.
(2013); see also Pen (1998).

• Now I want to do this with point particles included.

2 Equations

Eq. (5) of Jiang et al. (2013) is given as

Etot = E +
1

2
ρφ, (1)

where E is the sum of the bulk kinetic and thermal energy densities, ρ is mass density, and φ is gravitational
potential. The energy equation (3) of Jiang et al. (2013) is given as

∂E

∂t
+ ∇ · [(E + P )v] = −ρv ·∇φ, (2)

where t is time, P is pressure, and v is bulk velocity. This can be rewritten as (Eq. (9) of Jiang et al. 2013)

∂

∂t

(
E +

1

2
ρφ

)
+ ∇ · [(E + P )v + Fg] = 0. (3)

Jiang et al. (2013) derives Eq. (13) for ∇ · Fg, namely

∇ · Fg = ∇ ·
[
ρvφ+

1

8πG

(
φ∇φ̇− φ̇∇φ

)]
.

In Jiang et al. (2013), there are no particles, so φ is the potential due to the gas and all potential energy is
due to self-gravity of gas. Our simulation has particles and gas. Below I will demonstrate that equation (2)
is still valid in this general case that includes gas and particles, with φ now equal to the sum of the potential
due to gas and that due to particles. We will do this by repeating the derivation of Jiang et al. (2013) but
keeping in mind that particles are also present.

Poisson’s equation is given by
∇2φ = 4πGρ, (4)

and differentiating this equation with respect to time I obtain Eq. (12) of Jiang et al. 2013,

∇2φ̇ = 4πGρ̇. (5)
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3 The particles

For a point particle φ = −GMi/|r − ri|, ρ(r) = Miδ
3(r − ri), and ∇2φ = 4πGMiδ

3(r − ri). But particles
in the simulation are not true point particles because they have spline potentials. Let u = |r − ri|/h, with
h the softening radius. Then the spline potential is given by (e.g. Springel, 2010; Ohlmann et al., 2017),

φi = −GMi

h


−16

3
u2 +

48

5
u4 − 32

5
u5 +

14

5
, if 0 ≤ u < 0.5;

− 1

15u
− 32

3
u2 + 16u3 − 48

5
u4 +

32

15
u5 +

48

15
, if 0.5 ≤ u < 1;

1

u
, if u ≥ 1.

(6)

Now

∇2φ̇i =
∂

∂t
∇2φi =

∂

∂t
∇ ·∇φi = − ∂

∂t
∇ · gi,

For gi = −∇φi = −(∂φi/∂u)(∂u/∂r)∇r = −(1/h)(∂φi/∂u)r̂ one obtains

gi = −GMi

h2
r̂



32

3
u− 192

5
u3 + 32u4, if 0 ≤ u < 0.5;

− 1

15u2
+

64

3
u− 48u2 +

192

5
u3 − 32

3
u4, if 0.5 ≤ u < 1;

1

u2
, if u ≥ 1.

(7)

Using the divergence formula in spherical coordinates ∇ · gi = (1/r2)[∂(r2gr)/∂r], I compute

∇2φi =
32GMi

h3


1− 6u2 + 6u3, if 0 ≤ u < 0.5;

2− 6u+ 6u2 − 2u3, if 0.5 ≤ u < 1;

0, if u ≥ 1.

(8)

From Poisson’s equation, this implies that the particle’s mass is effectively spread out over the interior of
the softening sphere,

ρi =
∇2φi
4πG

=
8Mi

πh3


1− 6u2 + 6u3, if 0 ≤ u < 0.5;

2− 6u+ 6u2 − 2u3, if 0.5 ≤ u < 1;

0, if u ≥ 1.

(9)

Integrating this function over the volume inside the softening sphere, we recover the particle mass Mi, as
expected, i.e. 4π

∫ h
0 ρi(r)r

2dr = 4πh3
∫ 1
0 ρi(u)u2du = Mi.

Finally, we can compute the gravitational potential energy density of the particle as

Ei =
1

2
ρiφi

= −4GM2
i

πh4


−192

5
u8 + 96u7 − 288

5
u6 − 192

5
u5 +

208

5
u4 +

84

5
u3 − 332

15
u2 +

14

5
, if 0 ≤ u < 0.5;

−64

15
u8 + 32u7 − 512

5
u6 +

896

5
u5 − 896

5
u4 +

448

5
u3 − 2u2 − 98

5
u+

34

5
− 2

15u
, if 0.5 ≤ u < 1;

0, if u ≥ 1.

(10)

Integrating this profile over the interior of the softening sphere gives the potential energy of the particle.
Making use of the results

∫ 0.5
0 Eiu2du = 0.0449324 and

∫ 1
0.5 Eiu

2du = 0.0182134, we obtain

Ei = 4π

∫ h

0
Eir2dr = 4πh3

∫ 1

0
Eiu2du = −16(0.0631458)GM2

i

h
= −1.0103328GM2

i

h
. (11)
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Figure 1: Solid curves show the gravitational potential, radial component of acceleration due to gravity,
effective density of particle i, and effective potential energy density of particle i, a distance r from the
location of the particle. Here h is the spline softening length, Mi is the particle mass, and G is Newton’s
constant. Dotted curves show the solution for a point particle, for comparison.

3



(By contrast, the potential energy of a point particle is −∞.) These functions are illustrated in Fig. 1.
So in general ρ = ρgas +ρi and ∇2φ = ∇2φgas +∇2φi = ∇2(φgas +φi). But outside the softening spheres,

ρ = ρgas and ∇2φ = ∇2φgas.

4 Calculation

Using Eq. (2), Eq. (3) can be written as

∂

∂t

(
1

2
ρφ

)
+ ∇ · Fg = ρv · (∇φ). (12)

The continuity equation is
ρ̇ = −∇ · (ρv). (13)

Solving for ∇ · Fg in Eq. (12) and using Eq. (13), I obtain Eq. (11) of Jiang et al. 2013,

∇ · Fg =
1

2
∇ · (ρv)φ+ ρv ·∇φ− 1

2
ρφ̇. (14)

Now, let’s break up the first term in Eq. (14) to write

∇ · Fg = ∇ · (ρv)φ− 1

2
∇ · (ρv)φ+ ρv ·∇φ− 1

2
ρφ̇. (15)

Now, using Eqs. 4 and (5) and the continuity equation (13), Eq. (15) can be written as

∇ · Fg = ∇ · (ρv)φ+ ρv ·∇φ+
1

8πG
(φ∇2φ̇− φ̇∇2φ). (16)

Now
∇ · (φ∇φ̇− φ̇∇φ) = ∇φ ·∇φ̇+ φ∇2φ̇−∇φ̇ ·∇φ− φ̇∇2φ = φ∇2φ̇− φ̇∇2φ

and
∇ · (ρvφ) = ∇ · (ρv)φ+ ρv ·∇φ.

Using these relations in Eq. (16) I obtain Eq. (13) of Jiang et al. (2013)

∇ · Fg = ∇ ·
[
ρvφ+

1

8πG
(φ∇φ̇− φ̇∇φ)

]
. (17)

One choice of Fg is just the expression inside the square brackets.
We see then that the Jiang et al. (2013) derivation goes through with φ = φgas + φi, but only if ρ is

generalized as ρ = ρgas + ρi, with ρi given by Eq. (9).
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Figure 2: Density and potential energy profiles for AGB star at t = 0. Core profiles obtained using
equations (9) and (10).
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Figure 3: Density and potential energy profiles for RGB star at t = 0. Core profiles obtained using
equations (9) and (10).
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