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1 Aims

e Conserve energy (bulk kinetict+thermal+gravitational potential) to machine precision.

e This was done without particles so that gravitational PE is only due to self-gravity by |Jiang et al.
(2013)); see also Pen| (1998).

e Now I want to do this with point particles included.

2 Equations

Eq. (5) of |Jiang et al. (2013) is given as
1
Eiot = E + §P¢a (1)

where F is the sum of the bulk kinetic and thermal energy densities, p is mass density, and ¢ is gravitational
potential. The energy equation (3) of Jiang et al. (2013)) is given as

%€+V.[(E+P)v]:—pv-v¢, (2)

where ¢ is time, P is pressure, and v is bulk velocity. This can be rewritten as (Eq. (9) of |Jiang et al.[2013)

5 (B+500) + V- [(B+ P+ B =0. 3)

Jiang et al|(2013) derives Eq. (13) for V - F,, namely
V.F.=-V ¢+i(¢v¢s g’bvgb)
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InJiang et al. (2013)), there are no particles, so ¢ is the potential due to the gas and all potential energy is
due to self-gravity of gas. Our simulation has particles and gas. Below I will demonstrate that equation
is still valid in this general case that includes gas and particles, with ¢ now equal to the sum of the potential
due to gas and that due to particles. We will do this by repeating the derivation of Jiang et al.| (2013) but
keeping in mind that particles are also present.

Poisson’s equation is given by

V3¢ = 4nGp, (4)

and differentiating this equation with respect to time I obtain Eq. (12) of |Jiang et al.|[2013,

V2p = 4nGp. (5)



3 The particles

For a point particle ¢ = —GM;/|r — 7;|, p(r) = M;53(r — 7;), and V?¢ = 4nGM;5%(r — r;). But particles
in the simulation are not true point particles because they have spline potentials. Let u = |r — r;|/h, with
h the softening radius. Then the spline potential is given by (e.g. Springel, 2010; Ohlmann et al., [2017),
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Using the divergence formula in spherical coordinates V - g; = (1/72)[0(r2g,)/dr], I compute

201 1 — 6u” + 6u?, if 0 <wu<0.5;
Vi = 3 (2 6ut 6w’ — 20’ i 05 <u <l (8)
0, if u>1.

From Poisson’s equation, this implies that the particle’s mass is effectively spread out over the interior of
the softening sphere,

Vo sM 1 — 6u® + 6u?, if 0 <u<0.5;
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0, if u>1.

Integrating this function over the volume inside the softening sphere, we recover the particle mass M;, as
expected, i.e. 47 foh pi(r)ridr = 4mth? fol pi(w)uldu = M;.
Finally, we can compute the gravitational potential energy density of the particle as
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Integrating this profile over the interior of the softening sphere gives the potential energy of the particle.
Making use of the results f00'5 Euldu = 0.0449324 and f01.5 Euldu = 0.0182134, we obtain
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Figure 1: Solid curves show the gravitational potential, radial component of acceleration due to gravity,
effective density of particle i, and effective potential energy density of particle i, a distance r from the
location of the particle. Here h is the spline softening length, M; is the particle mass, and G is Newton’s
constant. Dotted curves show the solution for a point particle, for comparison.



(By contrast, the potential energy of a point particle is —o00.) These functions are illustrated in Fig.
So in general p = pgas + p; and V2 = V2¢gas +V2%p; = V2(¢>gas + ¢;). But outside the softening spheres,
P = Pgas and VQ(b = V2¢gas-

4 Calculation
Using Eq. , Eq. can be written as

0

g (;p(b) + V. Fy=pv- (Vo). (12)

The continuity equation is

p=-V-(pv). (13)

Solving for V - F, in Eq. and using Eq. (13), I obtain Eq. (11) of Jiang et al|[2013]

1 1 .
V- Fy= V- (pv)¢+pv-Vé—opd. (14)
Now, let’s break up the first term in Eq. to write
1 1 .

V'Fg:V'(P”)¢—§V'(PU)¢+PU'V¢—§P¢- (15)

Now, using Egs. [4| and and the continuity equation , Eq. can be written as

Vo E =V (p0)6 ko Vo + (697~ 6V2) (16)
Now
V- (¢V)— V) = V¢ Vo +¢V2h— Vo Vo — V26 = ¢V?¢ — $V?¢
and
V- (pvp) =V - (pv)¢ + pv - V.
Using these relations in Eq. I obtain Eq. (13) of |Jiang et al.| (2013])

VB =V o+ 6V~ V)| (17)

One choice of F; is just the expression inside the square brackets.
We see then that the Jiang et al. (2013) derivation goes through with ¢ = ¢gas + ¢;, but only if p is
generalized as p = pgas + pi, With p; given by Eq. @
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Figure 2: Density and potential energy profiles for AGB star at ¢ = 0. Core profiles obtained using

equations @ and .
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Figure 3: Density and potential energy profiles for RGB star at ¢ = 0. Core profiles obtained using

equations @ and .



