
morphologies controlled, combined with the fact
that its monoradical state is stable under ambient
conditions, gives this compound great potential
for incorporation into organic radical frameworks
(31, 32), electronicmemory devices (33–35), semi-
conductors (36), and energy storage devices (37).
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Identification of the Long-Sought
Common-Envelope Events
N. Ivanova,1* S. Justham,2 J. L. Avendano Nandez,1 J. C. Lombardi Jr.3

Common-envelope events (CEEs), during which two stars temporarily orbit within a shared
envelope, are believed to be vital for the formation of a wide range of close binaries. For decades,
the only evidence that CEEs actually occur has been indirect, based on the existence of systems
that could not be otherwise explained. Here we propose a direct observational signature of CEEs
arising from a physical model where emission from matter ejected in a CEE is controlled by a
recombination front as the matter cools. The natural range of time scales and energies from this
model, as well as the expected colors, light-curve shapes, ejection velocities, and event rate,
match those of a recently recognized class of red transient outbursts.

Manybinary star systems, including X-ray
binaries, cataclysmic variables, close
double-neutron stars, and the potential

progenitors of Type Ia supernovae and short-
duration g-ray bursts, are thought to be formed
by common-envelope events (CEEs). Because
most stellar-mass binary merger sources for
gravitational waves have experienced a CEE in
their past, improved knowledge of CEEs should
decrease the large uncertainty in theoretically
predicted merger rates. However, the short time
scale expected for CEEs suggested that we
would never directly observe them, allowing

us only to draw inferences from the systems
produced.

A CEE begins when a binary orbit becomes
unstable and decays. This might, for example,
be driven purely by tidal forces (i.e., the Darwin
instability), although CEEs are more commonly
imagined as occurring after a period of rapid
mass transfer from one star to the other (1). In
some cases, the rate of transfer is so high that the
receiving star is unable to accrete all the matter
without forming a shared common envelope (CE)
around the binary. This CE causes drag on one
or both stars and hence orbital decay, with orbital
energy and angular momentum being transferred
to the CE. This may end with a stellar merger or—
if the CE is ejected—the binary may survive, typ-
ically with a much reduced orbital separation,
critical to explaining many observed compact
binaries.

When a CEE results in formation of a close
binary, it is expected that a substantial pro-
portion of the mass is ejected—typically almost
the entire envelope of one of the stars. Some
mass can also be ejected in the case of a merger.
This partial ejection has two causes (2). First,
the orbital energy deposited into the CE early in
the merger may exceed the binding energy of
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The Chinese Academy of Sciences, Beijing 100012, China.
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the outer layers. Second, angular momentum tran-
sport may be too slow for the angular momen-
tum absorbed by the upper layers of the envelope
to be redistributed across the envelope as a
whole.

Here we consider the behavior of this
ejected matter to try to predict the appearance of
CEEs. A situation involving similar physics—
Type IIP supernovae—has been studied pre-
viously [e.g, (3–5)]. In that model, as the
ejected stellar plasma expands and cools, re-
combination changes its opacity, leading to the
propagation of a photosphere-defining “cooling
wave,” which moves inward with respect to the
mass variable.

For smooth and spherically symmetric ejecta
distributions, the model light curve will have a
plateau shape: The area of the photosphere is de-
fined by recombination, and so the emitting sur-
face does not grow with the speed at which the
ejected matter itself moves. During this phase,
whereas material ejected by the CEE will ex-
pand with velocity of the order of magnitude
of the initial escape velocity, the photospheric
radius should appear almost constant. The lu-
minosity LP of the emission during the plateau
(3–5), rescaled to the likely energy range of
CEE, is

LP ≈ 1:7� 104L⊙
Rinit

3:5R⊙

� �2=3 E∞
k

1046erg

� �5=6

� munb

0:03M⊙

� �−1=2 k
0:32 cm2g�1

� �−1=3

� Trec
4500 K

� �4=3

ð1Þ

where Rinit is the initial radius, E∞
k is the ki-

netic energy of the unbound mass munb at late
times after escaping the potential well, k is the
opacity of the ionized ejecta, and Trec is the recom-
bination temperature. The duration of the plateau
tP with the same assumptions is

tP ≈ 17 days
Rinit

3:5R⊙

� �1=6 E∞
k

1046erg

� �−1=6

� munb

0:03M⊙

� �1=2 k
0:32 cm2g�1

� �1=6

� Trec
4500 K

� �−2=3

ð2Þ

This model does not depend on the origin
of the energy released during the outburst. For
Type IIP supernovae, recombination controls the
release of the internal energy generated by strong
supernova shocks. For CEEs, however, there is
no such supernova-provided energy input. In-
stead, the energy released by recombination it-
self may dominate the energy budget of many
outbursts (6). The unbound mass munb could po-

tentially radiate—simply due to recombination—
as much energy as

Erecom ≅ 2:6� 1046ergsðX þ 1:5YfHeÞmunb

M⊙

ð3Þ
Here X is the mass fraction of hydrogen and Y is
the mass fraction of helium. Hydrogen would
initially be ionized in almost all of the likely
ejected material from most stars; however, he-
lium may be fully ionized only in some fraction
of it, denoted fHe. The role of recombination in a
CEE has hitherto been debated in the overall
energy balance, the controversy arising from
whether it can be effectively converted into me-
chanical energy to help eject the CE (7–9). This
energy budget for the outburst may be increased
by the thermal energy of the ejecta. Much of the
pre-CEE thermal energy of the ejecta may be ex-
pended on adiabatic cooling (6). However, the
shock heating caused by the CEE could well be
substantial in some cases.

To estimate the extent of the parameter space
of CEE outbursts, we use the model described
above to predict the diversity of real events. We
assume that E∞

k scales with the gravitational
potential at the surface of the primary star (2) and
use the dimensionless factor z to write E∞

k ¼
zðGm2

1fmÞ=Rinit, where fm = munb/m1 is the frac-
tion of the total primary mass m1 that becomes
unbound. From Eqs. 1 and 2, this leads to LPº
ð f 2mm7

1R
−1
initz

5Þ1=6 and tPºð f 2mm1R2
initz

−1Þ1=6.Two
families of events seem likely, one for mergers
(i.e., fm << 1) and one for CE ejection (i.e., fm ≤ 1)
(Fig. 1).

In addition to the predicted ranges of out-
burst energy and duration, this model for CEE
outbursts has several noteworthy features. The
physics that causes the plateau-shaped light curve
should lead to a difference in the phometrically
inferred expansion velocity and the actual ma-
terial velocity (which could be inferred from
spectra). The effective photospheric temperature
should be ∼5000 K for thick ejecta (4), and so
the outburst color will naturally be red. In addition,
once the ejected envelope has fully recombined, the
material may suddenly become transparent, un-
less enough of the ejecta has cooled down suf-
ficiently to produce dust. These characteristics are
reminiscent of curious transients with predom-
inantly red spectra that were recently detected in
the local universe [e.g., (10–16, 17)]. This empir-
ical class has been dubbed luminous red novae
(LRNe), a subset of the even more ambiguously
defined class of intermediate-luminosity red tran-
sients (ILRTs) (2). ILRTs cover a wide range of
outburst energies, from 1045 to a few 1047 ergs
(brighter than the brightest novae but still fainter
than Type Ia supernovae). They are characterized
by spectroscopically inferred expansion velocities
of 200 to 1000 km/s—much lower than would
be expected for novae or supernovae and also
markedly different from the photometric expan-
sion velocities (18). In addition, some could be

seen as red giants within a dozen years after the
outburst (16, 19).

It was not known what ILRTs are or wheth-
er they have a common cause; several ideas
have been suggested (2). A model that con-
sidered the possibility that LRNe are caused by
stellar mergers—a subset of CEEs—has been
independently considered several times for dif-
ferent LRN outbursts, though further examina-
tions of outburst features always showed various
drawbacks. However, those problematic features
do match expectations from our CEE-driven
outburst model (2).

A particular feature of the LRN outbursts—
as opposed to all ILRTs—is the presence of a
plateau in their luminosity curves. We compare
well-known LRNe (2) to the expected CEE di-
versity in Fig. 1. The agreement is pronounced,
especially given the simplicity of the model and
the potential complexities it neglects—e.g., how
CEE ejecta deviate from spherical symmetry, or
how much z for mergers might be different from
z for full envelope ejection (2).

M85 OT2006-1 is an LRN with well-known
peak luminosity and plateau duration. If the
luminosity from M85 OT2006-1 was largely
from recombination, ∼1.5 M◉ of plasma would
have recombined to provide the observed total
energy. This fits with constraints on the progen-
itor mass (≤2 M◉) from the stellar population
age (20). Thus, M85 OT2006-1 plausibly ejected
the whole envelope of a low-mass giant. This
outburst showed a plateau, with luminosity ≈1 ×
106 to 2 × 106 L◉ (21) for ≈60 to 80 days, and
had expansion velocities of 350 km/s (14). Our
inferred ejecta mass and the observed expansion
velocity indicate a kinetic energy of ∼1.8 × 1048 erg.
Then, Rinit = 45 R◉, self-consistent with our model,
gives LP ∼ 106 L◉ and tP ∼ 70 days.

Another recent outburst, V1309 Sco, is sim-
ilar to, but fainter than, most LRNe, as it ra-
diated away only ∼3 × 1044 erg during a ∼25-day
plateau-shaped maximum in the light curve (19).
The progenitor was a contact binary with a rel-
atively rapidly decaying orbital period of ∼1.4 days.
After the outburst, the system appeared to be a
single star; therefore, this appears to have been
a CEE, leading to a merger (19). However, sev-
eral features of the V1309 Sco outburst, in par-
ticular the plateau in the light curve and sudden
transparency, were difficult to reconcile with prior
theoretical expectations for the appearance of a
CEE (2).

Because the V1309 Sco progenitor was ob-
served in detail, this system is ideal for testing
our model. Beginning with the properties of the
premerger contact binary (19, 22), we calculated
the amount of material that became unbound
during the V1309 merger using two methods—
simple energy balance using a one-dimensional
(1D) stellar code and a set of 3D hydrodynam-
ical simulations (2). Both methods predict that a
small mass, ∼0.03 to 0.08 M◉, will become un-
bound. Complete recombination of this ejected
mass would provide enough energy (≥7 × 1044 ergs)
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to explain the total energy output of V1309 Sco.
The output of the 3D simulations, combined with
Eqs. 1 and 2, predicts plateau durations from 16
to 25 days and plateau luminosities of 1.8 × 104

to 2.2 × 104 L◉. These values match the ob-
served luminosity (LP ∼ 2 × 104L◉) and plateau
duration (about 25 days).

Considering the menagerie of theoretically
expected outbursts from CEEs, we note that
events in the top right of Fig. 1 should be rela-
tively rare [compare with h Car; see (2)], and
those in the bottom left (stellar mergers) compar-
atively hard to detect in a magnitude-limited
survey. Assuming that the peak luminosity of the
outburst is about an order of magnitude higher
than LP, we find that the whole range of LP and
tP for stellar masses 1 to 150 M◉ coincides well
with the observed domain for luminosities and
durations of LRNe suggested in (23). We can
estimate the rate of CEE-originated outbursts
that appear as red transients, by considering
what fraction of stars in the galaxy undergo a
CEE. We estimate 0.024 such events per year
per Milky Way–like galaxy (2), of which about
half should be more luminous outbursts (results
of a CE ejection) and half are lower-luminosity
events (powered by stellar mergers). This is
consistent with the empirical lower limit for
more luminous ILRTs of 0.019 year−1 for the
Galaxy (20), because we do not expect that all
luminous ILRTs must be powered by a CEE
[though some non-LRN ILRTs, like NGC 300-OT

or SN2008S, might potentially also be triggered
by CEEs (2)].

The question of whether recombination en-
ergy can help to unbind a stellar envelope dur-
ing a CEE is important for understanding the
formation and survival of many binary systems
(8, 9). Our model suggests that a large fraction
of the energy from recombination is commonly
radiated away after a CEE. Such luminosity pro-
vides a beacon, which helps to illuminate and
identify a CE ejection or merger at large distances.
The recombination wave also controls the shape
of the plateau-shaped light curve of LRNe. We
therefore suggest that detecting and characteriz-
ing the population of ILRTs will help us under-
stand CEEs.
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A B

Fig. 1. (Left) Model diversity in the LP−tP parameter space is indicated by
lines representing constant primary mass and radius. fm is fractional mass
loss and z is the kinetic energy at infinity, parametrized as a fraction of the
binding energy at the surface of the primary star. Stellar mergers are in a
regime of little mass ejection, whereas fm = 0.9 approximates full envelope
ejection. (Right) Estimated ranges of the plateau luminosity LP and duration

tP for primary stars with zero-age main sequence (ZAMS) masses from 1 to
150 M◉. munb is the ejecta mass. It is assumed that mergers can happen
anytime during the primary star’s evolution, whereas full envelope ejection can
occur only for post–main-sequence primary stars. We used fitting formulae
for stellar evolution (24), at Z◉. In both panels, values for LP and tP are
marked for the outbursts from V1309 Sco, M85 OT, M31-RV, and V838 Mon.
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