
New Astronomy 19 (2013) 48–55
Contents lists available at SciVerse ScienceDirect

New Astronomy

journal homepage: www.elsevier .com/locate /newast
A new way to conserve total energy for Eulerian hydrodynamic simulations
with self-gravity

Yan-Fei Jiang ⇑, Mikhail Belyaev, Jeremy Goodman, James M. Stone
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

h i g h l i g h t s

" Energy is conserved with our new method for Eulerian simulations with self-gravity.
" The new algorithm is stable, second order accurate and usually not more expensive.
" The new algorithm is important when energy error can severely affect the dynamics.
a r t i c l e i n f o

Article history:
Received 20 January 2012
Received in revised form 16 May 2012
Accepted 2 August 2012
Available online 9 August 2012

Communicated by J. Makino

Keywords:
Methods: numerical
Gravitation
Hydrodynamics
1384-1076/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.newast.2012.08.002

⇑ Corresponding author.
E-mail address: yanfei@astro.princeton.edu (Y.-F. J
a b s t r a c t

We propose a new method to conserve the total energy to round-off error in grid-based codes for hydro-
dynamic simulations with self-gravity. A formula for the energy flux due to the work done by the self-
gravitational force is given, so the change in total energy can be written in conservative form. Numerical
experiments with the code Athena show that the total energy is indeed conserved with our new
algorithm and the new algorithm is second order accurate. We have performed a set of tests that show
the numerical errors in the traditional, non-conservative algorithm can affect the dynamics of the system.
The new algorithm only requires one extra solution of the Poisson equation, as compared to the tradi-
tional algorithm which includes self-gravity as a source term. If the Poisson solver takes a negligible
fraction of the total simulation time, such as when FFTs are used, the new algorithm is almost as efficient
as the original method. This new algorithm is useful in Eulerian hydrodynamic simulations with
self-gravity, especially when results are sensitive to small energy errors, as for radiation pressure dom-
inated flow.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Self-gravity plays an important role in many astrophysical
flows. For instance, it is central to massive star formation (e.g.,
McKee and Ostriker, 2007; Krumholz et al., 2009), supernova
explosions (e.g., Nordhaus et al., 2010), planet formation in proto-
planetary disks (e.g., Armitage, 2011), and structure formation in
the early universe (e.g., Bertschinger, 1998). Numerical modeling
of these systems requires that self-gravity be implemented cor-
rectly in hydrodynamical simulations, especially in problems for
which energy balance is important. For example, the fate of a col-
lapsing cloud depends on the total energy which is the sum of the
potential, internal, and kinetic energies. For some systems, e.g.
those having a relativistic equation of state with adiabatic gamma,
c � 4=3, the total energy can be much smaller than either the po-
tential or internal energies in hydrostatic equilibrium. Thus, a
ll rights reserved.

iang).
small numerical error in the computation of the potential energy
can lead to a large fractional error in the total energy, potentially
causing a bound system to become unbound (e.g., Jiang and
Goodman, 2011) or vice versa. Energy conservation in a grid-based
code with self-gravity is usually not guaranteed. The goal of this
paper is to propose a new algorithm for grid-based codes, which
conserves the sum of the internal, kinetic, and potential energies
to round-off error, allowing accurate simulations of self-gravitating
systems to be performed.

The change in the momentum and the energy due to self-
gravity are typically added to the equations of hydrodynamics as
source terms. In this case, the Euler equations read

@q
@t
þ $ � ðqvÞ ¼ 0; ð1Þ

@ðqvÞ
@t

þ $ � ðqvvþ PÞ ¼ �q$/; ð2Þ

@E
@t
þ $ � ½ðEþ PÞv� ¼ �qv � $/; ð3Þ

$2/ ¼ 4pGq: ð4Þ
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Here q; v; P are density, velocity, and pressure respectively, and E is
the sum of the internal and kinetic energies. G is the gravitational
constant, and / is the gravitational potential, which is related to
the density via the Poisson equation (4). We can also define the total
energy as

Etot � Eþ 1
2
q/: ð5Þ

Etot is a globally conserved quantity so that

@

@t

Z
d3xEtot ¼ 0 ð6Þ

for any isolated self-gravitating system. Expression (6) can be de-
rived by integrating Eq. (3) over all of space and applying the diver-
gence theorem (see e.g., Binney and Tremaine, 2008, Section 2.1).

Eqs. (2) and (3) are written in non-conservative form. Therefore,
momentum and energy are usually not conserved to roundoff error
when they are solved numerically. It is well known that if momen-
tum is not conserved for a self-gravitating system, then the shape
of the object cannot be kept very well when it moves across the
simulation box (e.g., Edgar et al., 2005; Tasker et al., 2008). In order
to conserve momentum, it is now common practice to write the
momentum equation in conservative form as

@ðqvÞ
@t

þ $ � ðqvvþ Pþ TgÞ ¼ 0; ð7Þ

where the gravitational tensor Tg is

Tg ¼
1

4pG
$/$/� 1

2
ð$/Þ � ð$/ÞI

� �
; ð8Þ

and I is the identity tensor. This equation is mathematically equiv-
alent to the original momentum Eq. (2) with use of Eq. (4). However
Eq. (8) can be solved in a completely different way numerically.
Momentum change due to gravitational acceleration is no longer in-
cluded as a source term. Instead, it is included as a flux term via Tg,
which means the total momentum can be conserved to round-off
error numerically. This has already been implemented in many
grid-based codes, such as Athena.

The improvement we propose in this paper is to also write the
energy equation with self-gravity (3) in conservative form. Using
this form of the equation, we devise a numerical algorithm that
conserves the total energy with self-gravity to round-off error.

2. Formula for the energy flux

We begin by rewriting the energy Eq. (3) in the following form

@

@t
Eþ 1

2
q/

� �
þ $ � ðEþ PÞv þ FgÞ

� �
¼ 0: ð9Þ

As long as the flux due to self-gravity Fg falls off faster than r�2 at
large distances and the system is spatially bounded, Eq. (9) auto-
matically implies that Eq. (6) is satisfied. We now solve for the form
of Fg.

Using Eq. (3), Eq. (9) can be written as

@

@t
1
2
q/

� �
þ $ � Fg ¼ qv � $/: ð10Þ

Using the continuity equation, this becomes

$ � Fg ¼
1
2

$ � qvð Þ/þ qv � $/� 1
2
q _/: ð11Þ

Here _/ � @/=@t is the time rate of change of the potential. Differen-
tiating the Poisson equation with respect to time yields

$2 _/ ¼ 4pG _q ¼ �4pG$ � qvð Þ: ð12Þ

Substituting this in Eq. (11) gives
$ � Fg ¼ $ � qvð Þ/þ qv � $/þ 1
8pG

/$2 _/� _/$2/
� 	

¼ $ � qv/þ 1
8pG

/$ _/� _/$/
� 	� �

; ð13Þ

so one form of the energy flux due to self-gravity is

Fg ¼
1

8pG
/$ _/� _/$/
� 	

þ qv/: ð14Þ

Note that this form for the energy flux is not unique, and as dis-
cussed in Appendix A, alternative forms are available, which also
satisfy Eq. (13). However, only the divergence of the gravitational
tensor and energy flux are used to evolve the system. The gravita-
tional tensor and energy flux themselves are not used directly. Thus,
as long as equation (13) is satisfied, different forms of the energy
flux are mathematically equivalent. We note that a similar formula
for energy flux due to self-gravity has been proposed by Pen (1998).

In order to calculate the energy flux, we need to solve Eq. (12)
for _/. Note that this equation has the same form as the Poisson
equation, which means it can be solved with the same numerical
technique (such as FFT for periodic boundary conditions). Details
on how to calculate the energy flux Fg are given in the next section.

3. Numerical implementation

We implement the equations of hydrodynamics with self-grav-
ity in conservative form using Athena (e.g., Stone et al., 2008),
which is a MHD code that uses an unsplit, higher order Godunov
scheme. Since the implementation of self-gravity is unchanged
by the addition of a magnetic field, we focus on the hydrodynamic
case here. With self-gravity, the following steps are needed in addi-
tion to the original algorithm described in Stone et al. (2008).

First, at time step n we need to compute the gravitational po-
tential /n by solving the Poisson equation using the density distri-
bution. For periodic boundary conditions, this can be done
efficiently using the Fast Fourier Transform (FFT).

Second, after we get the left and right states at the cell interface
for each direction (step 1 of 6.1 in Stone et al., 2008), we need to
add the change due to self-gravity to the left and right states at
the half time step dt=2. If primitive variables (density, velocity
and pressure) are used for the reconstruction, we only need to
add the gravitational acceleration �$/ to the left and right veloc-
ity. No gravitational source terms need to be added to the pressure.

Third, after we get the fluxes at the interfaces from the Riemann
solvers (step 7 in Stone et al., 2008), we solve Eq. (12) for _/nþ1=2,
and the same numerical technique as for solving the Poisson equa-
tion can be used. We just need to replace q on the right hand side
of the Poisson equation with �$ � qvð Þ, where qv is the density
flux from the Riemann solvers at each interface. The _/nþ1=2 we
get is at the cell centers and is the time-averaged value for time
step n.

Fourth, we update the density from time step n to nþ 1 and cal-
culate the new potential /nþ1 based on the updated density distri-
bution. Then, we use the averaged potential ð/n þ /nþ1Þ=2 and
_/nþ1=2 to calculate the gravitational tensor Tg and the energy flux
Fg. The cell-centered potential / is spatially-averaged to get the po-
tential at cell interfaces.

Finally, we update the momentum and the total energy with Tg

and Fg. At each cell ði; j; kÞ, if the cell size is dx� dy� dz, then the
momentum change (take qvx for example) due to self-gravity is

ðqvxÞnþ1
i;j;k ¼ ðqvxÞni;j;k �

dt
dx

Tnþ1=2
gxxiþ1=2;j;k

� Tnþ1=2
gxxi�1=2;j;k

� 	
� dt

dy
Tnþ1=2

gyxi;jþ1=2;k
� Tnþ1=2

gyxi;j�1=2;k

� �
� dt

dz
Tnþ1=2

gzxi;j;kþ1=2
� Tnþ1=2

gzxi;j;k�1=2

� 	
ð15Þ



Table 1
From left to right, the columns designate the simulation label, the number of
dimensions, the algorithm used (c for conservative, nc for nonconservative), the
number of cells (Nx � Ny � Nz), the wavelength of the initial perturbation measured in
cells (all cells have the same size), the Jeans wavelength measured in cells, the Mach
number of the background fluid, and the adiabatic index of the gas. The Courant
number for all simulations is 0.8, and the HLLC Riemann solver is used for all
simulations.

sim dim alg N k kJ M0 c

A 1 c 256 256 128 0 5/3
B 1 c 16 16 32 0 5/3
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and the change in the total energy is

Enþ1
i;j;k ¼ En

i;j;k þ
1
2

q/ð Þni;j;k �
1
2

q/ð Þnþ1
i;j;k

� �

� dt
dx

Fnþ1=2
gxiþ1=2;j;k

� Fnþ1=2
gxi�1=2;j;k

� 	
� dt

dy
Fnþ1=2

gyi;jþ1=2;k
� Fnþ1=2

gyi;j�1=2;k

� �

� dt
dz

Fnþ1=2
gzi;j;kþ1=2

� Fnþ1=2
gzi;j;k�1=2

� 	
: ð16Þ

Note that the definition of E does not include potential energy.

B2 2 c 23 � 23 16 32 0 5/3
C 1 c 32 32 64 0 5/3
C2 2 c 45 � 45 32 64 0 5/3
D 1 c 64 64 128 0 5/3
D2 2 c 91 � 91 64 128 0 5/3
E 1 c 128 128 256 0 5/3
E2 2 c 181 � 181 128 256 0 5/3
F 1 c 256 256 512 0 5/3
F2 2 c 362 � 362 256 512 0 5/3
G 1 c 512 512 1024 0 5/3
H 2 nc 22 � 22 16 8 0 5/3
I 2 nc 45 � 45 32 16 0 5/3
J 2 nc 91 � 91 64 32 0 5/3
Jc 2 c 91 � 91 64 32 0 5/3
K 2 nc 181 � 181 128 64 0 5/3
L 2 nc 362 � 362 256 128 0 5/3
M 2 nc 91 � 91 64 32 0 4/3
N 2 nc 181 � 181 128 64 0 4/3
O 2 nc 362 � 362 256 128 0 4/3
P 2 c 91 � 91 64 32 10 5/3
4. Numerical tests

To show that our algorithm is stable, second order accurate, and
conserves the total energy to machine precision, we perform sev-
eral tests in one, two, and three dimensions. We also compare
the results of the new algorithm with a non-conservative one that
has self-gravity added as a source term. In all cases, the non-con-
servative algorithm use the conservative form of the momentum
— but not energy — equation. In the non-conservative algorithm,
the gravitational potential /n is first calculated based on density
at time step n. After the density is updated, the new potential
/nþ1 at time step nþ 1 is calculated. Then the energy source term
is added as � qvð Þnþ1=2 � $ /n þ /nþ1
 �

=2, where qvð Þnþ1=2 is the
average of the left and right sides of the density flux. In this way,
the non-conservative algorithm can achieve second order accurate
as long as energy error due to self-gravity is negligible.
4.1. Jeans collapse in 1D and 2D

All of our tests in 1D and 2D are based on the Jeans instability
problem, where self-gravity is the dominant force for the dynam-
ics. We initialize the background state to be a self-gravitating, uni-
form density medium and assume the fluid is adiabatic with sound
speed c2

s ¼ cP=q. On top of this background state, we initialize a
small-amplitude (dq=q ¼ 10�6) normal mode perturbation with
wavevector k. The amplitude of the perturbation changes with
time as eixt , where x is given by the Jeans dispersion relation

x2 ¼ k2c2
s � 4pGq: ð17Þ

The Jeans length is given by kJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc2

s =Gq
p

, so that a normal mode
perturbation with wavelength k < kJ results in a propagating wave,
whereas one with k > kJ yields an instability that saturates by form-
ing dense clumps. We focus on the unstable case for comparing the
conservative and non-conservative algorithms. Table 1 lists the de-
tails of each of our simulations and shows the relevant numerical
parameters used.
Fig. 1. Left: Comparison of the analytical and numerical solutions for simulation A. Th
numerical solution is shown with points. At late times, the numerical solution deviates
saturates. Right: Convergence study for the conservative algorithm. The points correspon
plotted for reference.
4.1.1. 1D tests
The first tests we perform are an accuracy and a convergence

test in 1D. In Fig. 1, the left panel shows the time-evolution of
the square of the perturbed gravitational potential integrated over
the simulation domain for simulation A, which is for an unstable
mode having k ¼ 2kJ . The points show values from the simulations
with time measured in units of ðkJcsÞ�1 and distance measured in
units of kJ . The gravitational potential is thus measured in units
of ðkJkJcsÞ2 ¼ ð2pcsÞ2. The solid line shows the analytical solution
obtained from the dispersion relation (17). It is clear that the code
accurately captures the exponential growth in the linear phase of
the instability through to saturation. The right panel of Fig. 1 shows
convergence of the new algorithm with resolution. The initial per-
turbation has k ¼ kJ=2 and corresponds to a stable perturbation.
The points are for simulations B-F (the only thing that varies be-
tween the simulations is resolution) and the x-axis shows the
number of cells per Jeans length. The y-axis shows the error in
the L2 norm between the numerical and analytical solutions for
U after one period (t ¼ 2p=x). The error in the L2 norm can be rep-
resented as
e analytical solution for the linear stage of growth is shown by the line, and the
from the linear analytical solution because the instability becomes non-linear and
d to simulations B — F, and a line with slope indicating second order convergence is



Table 2
The energy error for the non-conservative simulations in 2D as a function of
resolution (increasing resolution going down). The error shown is the fractional error
in the total energy between the beginning of the simulation and when the
perturbation as virialized. The simulations H, I, J, K, L are done with adiabatic index
c ¼ 5=3 while the simulations M, N, O are done with adiabatic index c ¼ 4=3. Note
that in the case c ¼ 4=3, the initial total energy is twice that of the case c ¼ 5=3
(neglecting the energy of the perturbation).

Label Error Label Error

H .65 – –
I .32 – –
J .18 M .09
K .09 N .05
L .05 O .03
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�ðL2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i Ui � ~Ui

� 	2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
iU

2
i

q ; ð18Þ

where Ui is the value of the exact solution for the potential at point
i; ~Ui is the value of the numerical solution, and the summation runs
over all points in the simulation domain. For reference, we also plot
a line whose slope indicates second order convergence, and which
confirms that the new algorithm does indeed converge at second
order.

To test the conservation properties of the new algorithm in
comparison with the old one, we compute the fractional energy er-
ror at timestep n to be jEn � E0j=E0, where

En ¼
X

i

1
2
qn

i ðvn
i Þ

2 þ Pn
i

c� 1
þ 1

2
qn

i U
n
i

� �
: ð19Þ

Indeed, our new algorithm conserves the total energy to round-off
error. However, in 1D, the original algorithm also conserves the to-
tal energy to very high precision. Thus, we need to go to a higher
number of dimensions to demonstrate the superior energy conser-
vation properties of the new algorithm.

4.1.2. 2D linear wave tests
To see how our new algorithm and the non-conservative algo-

rithm behave in 2D, we again initialize an unstable eigenmode
with k ¼ 2kJ , just as in the 1D case. Now, however, we choose
kx=ky ¼ 1 so that the wavefronts are not aligned with the grid.

We perform two kinds of tests for the 2D case, which are anal-
ogous to the tests in the 1D case. The first is a convergence test of
the conservative and non-conservative algorithms, for a stable
mode (k < kJ). The second, is a test of the energy conservation for
the two algorithms for an unstable mode (k > kJ).

Fig. 2 shows the results of the convergence test for the conser-
vative algorithm (simulations B2-F2). On a log–log graph, we plot
the L2 norm error in q as a function of resolution after one oscilla-
tion period for a mode having k ¼ kJ=2, and an initial amplitude of
dq=q ¼ 10�6. The points denote the simulation results, and the
slope of the solid line shows second order convergence. It is clear
that the conservative algorithm does indeed converge at second or-
der. We have tested that the non-conservative algorithm also con-
verges at second order for this the stable mode. Because the results
are essentially identical to the conservative algorithm, we do not
plot them.

We now describe tests of energy conservation, using an unsta-
ble normal mode. In 2D, in order to make the normal mode col-
lapse to a filament as opposed to a sheet, we increase the density
perturbation in the center of the simulation box by 2% relative to
the edges. We find that the energy conservation properties of the
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Fig. 2. Convergence study for the conservative algorithm in 2D. The points
correspond to simulations B2 — F2, and a line with slope indicating second order
convergence is plotted for reference. The non-conservative algorithm gives almost
the same result for this stable propagation linear mode.
non-conservative algorithm are drastically degraded relative to
the 1D case. Table 2 shows the fractional energy error for the non-
conservative 2D, c ¼ 5=3 simulations (H — L), and the nonconser-
vative 2D, c ¼ 4=3 simulations (M — O). It is clear from the table,
that in 2D the energy error for the non-conservative algorithm
can be of order the total energy, although the error does decrease
with increasing resolution. On the other hand, the conservative
algorithm still conserves the total energy to machine precision
for the same set of tests.

Note that the initial total energy (ignoring the energy of the per-
turbation) is roughly E ¼ P=ðc� 1Þ. Thus, the initial total energy for
the c ¼ 4=3 case is twice that for the c ¼ 5=3 case. This means that
although the fractional energy error for the c ¼ 5=3 case is roughly
double that of the c ¼ 4=3 case, the absolute value of the accumu-
lated energy error is roughly the same. We have also made sure
that the total energy is conserved for the conservative algorithm
if we advect the background medium with respect to the grid at
Mach 10 (simulation P).

The main cause of the discrepancy between the 1D and the 2D
case is likely to be twofold. First, the wavevector is no longer
aligned with the grid, so the 2D case is less symmetric than the
1D case. Second, the collapse proceeds further in the 2D case: to
a filament in 2D as opposed to a sheet in 1D. As self-gravitational
energy is a global quantity, the energy error caused by the source
terms of self-gravity has different dependence on time step and
grid size compared with the normal local truncation error. This en-
ergy error will be at a maximum when the gravitational potential
changes most rapidly. When the total numerical error is dominated
by the gravitational energy error for the non-conservative algo-
rithm, Table 2 shows that the error scales roughly as Oð1=NÞ. How-
ever, when the energy error from self-gravitational source terms is
much smaller than the usual truncation error as in the case of
Fig. 2, the non-conservative algorithm shows second order conver-
gence with resolution.

Fig. 3 shows the time-evolution of the energy error for simula-
tion H. Overplotted is the kinetic energy in the simulation, normal-
ized to the maximum kinetic energy. It is evident that most of the
error is accumulated in a short interval around the time when the
kinetic energy, and hence the infall velocity are large. This is also
when the gravitational potential changes most rapidly, making
the energy error large for the non-conservative algorithm.

For reference, Fig. 4 shows three snapshots of the density from
the 2D simulation which has a resolution of 128 cells per Jeans
length. The first snapshot is taken during the linear phase of expo-
nential growth, the second during the non-linear phase when mat-
ter is collapsing to a sheet, the third during the phase when matter
is collapsing to a filament, and the fourth during the final, virialized
state.

In order to see the possible effect on the dynamics due to the
energy error, we compare the density distribution from
simulations J and Jc. The two simulations have exactly the same
parameters but simulation J uses the non-conservative algorithm,
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Fig. 3. The solid line shows the fractional error in the total energy as a function of
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corresponds to the phase in which the collapsing object has already finished
collapsing to a sheet, but is just starting to collapse to a filament.
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whereas simulation Jc uses the conservative one. Fig. 5 shows that
the density distributions are different depending on whether the
total energy is conserved or not. When the total energy is con-
served (right panel of Fig. 5), the formed clump is symmetric, as
Fig. 4. Snapshots of the density and the velocity field from simulation L. The scale of
background density is q ¼ 1. The magnitude scale of the velocity vectors is arbitrary, and
the linear stage of the collapse. The upper right panel shows the simulation at t ¼ 18 ðkJc
The lower left panel shows the collapse of the sheet to a filament at t ¼ 21 ðkJcsÞ�1. The
it should be, because it is formed from a symmetric filament. How-
ever, for the non-conservative algorithm, the symmetry is lost (left
panel of Fig. 5). Moreover, rotation is generated with the non-con-
servative algorithm, which should not be the case, since the initial
angular momentum is zero. This is likely because the energy error
of the non-conservative algorithm changes the distribution of gas
pressure, which causes the rotation of the fluid.

4.2. Collapse of a polytropic sphere in 3D

The test that shows the difference between the conservative
and non-conservative algorithms most clearly in 3D is the collapse
of a polytropic sphere. This test is also relevant to many astrophys-
ical systems where self-gravity is important, such as star formation
and planet formation in protoplanetary disks. In 3D, the adiabatic
index c ¼ 4=3 is a critical case when the total energy of a hydro-
static self-gravitating sphere becomes zero. The dynamics of the
sphere will be sensitive to the energy error made in the numerical
solution, which may change the sign of the total energy in the solu-
tion. The c ¼ 4=3 case is relevant for massive stars when gravity is
balanced by a radiation pressure gradient (e.g., Jiang and Goodman,
2011).

We initialize a polytropic sphere with polytropic index n ¼ 3 in
a periodic domain, so the radial density qðrÞ and pressure PðrÞ pro-
files are given by
the density for each figure is given by the corresponding color bar, and the initial
varies from figure to figure. The upper left panel is taken at t ¼ 9:2 ðkJcsÞ�1, during

sÞ�1, in the non-linear regime when the density distribution has collapsed to a sheet.
lower right panel shows the final, virialized filament at t ¼ 73ðkJcsÞ�1.



Fig. 5. Comparison of the density distribution for the conservative and non-conservative algorithm for simulations J and Jc in Table 1. The snapshots are taken at time t ¼ 1:1,
when the collapse stops and the energy error reaches its maximum value for the simulation using the non-conservative algorithm. The left panel is the density distribution
from the non-conservative algorithm while the right panel is the result from the conservative algorithm.

Fig. 6. Time evolution of the central density in the polytropic sphere test from two
simulations that use the same initial conditions but different numerical algorithms.
The solid line is the result using the non-conservative algorithm whereas the
dashed line is the result using the conservative one.
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1
r2

d
dr

r2

q
dP
dr

� �
¼ �4pGq;

P
Pc;0
¼ q

qc;0

 !4=3

: ð20Þ

In our units, 4pG ¼ 1, the central density is qc;0 ¼ 1, and the central
pressure in hydrostatic equilibrium is Pc;0 ¼ 8:09� 10�5. The adia-
batic index c ¼ 1:36 is chosen to be close to 4=3 in order to clearly
demonstrate the difference between the two algorithms. The back-
ground density in the simulation is set to 0.005. The diameter of the
sphere is 0.16, which is 20% the size of the simulation box, and the
sphere is located at the center of the simulation box. The resolution
we use is 2563.

Initially, we decrease the central pressure to be a fraction of the
pressure in hydrostatic equilibrium and let the sphere evolve un-
der its own gravity. Let us estimate how much the size of the poly-
tropic sphere should change due to a decrease in the central
pressure. Starting from the virial theorem and using simple scaling
relations, it is straightforward to derive that in hydrostatic
equilibrium

M2�cR3c�4 ¼ aðcÞPc;0q�c
c;0: ð21Þ

Here aðcÞ is a constant that depends only on c;R is the radius of the
sphere, and M is the total mass. If we assume homologous adiabatic
collapse, then the right hand side of Eq. (21) is a constant during the
collapse. Suppose now that we reduce the initial pressure to be a
fraction � of the pressure in hydrostatic equilibrium. We can then
solve for the final radius, R, in terms of the initial radius R0 as

R
R0
¼ �

1
3c�4: ð22Þ

In our simulations, we use c ¼ 1:36 and � ¼ :93, which gives
R=R0 � :4. Thus, we expect to get a large-amplitude, spherically-
symmetric, periodic solution. Moreover, since the fractional radius
of the sphere is small compared to the box size, we expect spherical
symmetry to be maintained quite well, even though we use periodic
boundary conditions.

We start two simulations with exactly the same initial condi-
tions but one uses the non-conservative algorithm whereas the
other uses the conservative one. The time-evolution of the central
density from the two simulations is shown in Fig. 6. Both simula-
tions give almost the same result for t < 15, but after the initial
phase of the collapse, they show quite different behaviors with
the non-conservative algorithm attaining a much larger peak cen-
tral density. Snapshots of the density distribution from the two
simulations through the plane y ¼ 0 at times t ¼ 460; t ¼ 680,
and t ¼ 900 are shown in Fig. 7. Radial profiles of the spheres at
time t ¼ 460 and t ¼ 900 through the line ðx ¼ 0; y ¼ 0Þ are exam-
ined in Fig. 8. At the early time, t ¼ 460, both algorithms are able to
keep the spherical symmetry of the object, although non-spherical
structures have already appeared with the non-conservative algo-
rithm (top panels of Fig. 7). These non-spherical structures are
amplified by time t ¼ 680. Eventually, the initial density profile
is destroyed for the non-conservative algorithm, and a low density
hole is formed at the center of the sphere at time t ¼ 900. On the
other hand, the conservative algorithm (bottom panels of Fig. 7)
yields a periodic solution and keeps the spherical symmetry and
initial profile of the sphere much better during the collapse than



Fig. 7. Snaphsots of the density distributions from the polytropic sphere test taken at different times through the plane y ¼ 0 from two simulations using different algorithms.
From left to right, the times are t ¼ 460;680;900, and in each case, only the central region is shown. The two simulations start from exactly the same initial conditions. The
top panels correspond to the non-conservative algorithm whereas the bottom panels correspond to the conservative one. A central hole is created with the non-conservative
algorithm and the simulation shows strong deviations from spherical symmetry.

Fig. 8. Density profiles at different times on the line ðx ¼ 0; y ¼ 0Þ from the 3D
polytropic sphere test using two different numerical algorithms. The blue line is the
initial density profile, which is the same for both simulations. The black lines are
results for the simulation using the non-conservative algorithm whereas the red
lines are results for the simulation using the conservative algorithm. The solid black
and red lines are measured at time t ¼ 460 while the dashed black and red lines are
measured at time t ¼ 900. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the nonconservative one. In conclusion, this test shows that for
c � 4=3 in 3D, the dynamics are significantly affected by the choice
of algorithm. The conservative algorithm is favored, since it better
preserves spherical symmetry throughout the collapse and yields a
periodic solution as expected.

5. Performance

In order to calculate the time derivative of the potential, we
need to solve one extra Poisson equation compared to the old
method. If the Poisson solver takes a significant fraction of the total
simulation time, the code will be slowed down by almost a factor
of two for this new feature. If the time spent in the Poisson solver is
negligible, then the new code is almost as efficient as the old one.
For all our simulations, we use periodic boundary conditions and
solve the Poisson equation using FFTs. In this case, the new algo-
rithm is almost as efficient as the original method.
6. Summary and discussion

We have developed a new algorithm to conserve total energy to
round-off error for Eulerian hydrodynamical simulations incorpo-
rating self-gravity. We have implemented this new algorithm in
Athena and shown that it conserves total energy to round-off error
as expected. By comparing a set of tests in 1D, 2D and 3D with two
different numerical algorithms for self-gravity (the new conserva-
tive algorithm and the traditional non-conservative algorithm), we
have shown that the numerical error made in the traditional algo-
rithm can change the dynamics significantly. From our numerical
experiments, we conclude that the conservative algorithm will be
important when a small amount of energy error can dramatically
affect the dynamics, such as in radiation-dominated systems with
an adiabatic index close to 4/3.

We tested our new algorithm by implementing it in Athena,
which uses an unsplit Godunov method to solve the equations of
hydrodynamics. In principle, this algorithm can also be used in
codes that implement an operator split scheme, such as ZEUS
(Stone and Norman, 1992). In the application using ZEUS with
self-gravity performed by Jiang and Goodman (2011), the energy
error using the traditional non-conservative algorithm was posi-
tive. If ZEUS is used to study problems of star formation with the
non-conservative algorithm, gravitationally bound clumps can ac-
quire a positive total energy due to numerical errors and be de-
stroyed as a result of numerical heating. However, if our
conservative algorithm is used, this will not happen, since the total
energy is conserved.

The new conservative algorithm is not necessary for all hydro-
dynamical simulations incorporating self-gravity. We find that
for cases when the energy error is not a concern, the two algo-
rithms give almost identical results. For example, for small oscilla-
tions of a polytropic sphere with an adiabatic index of c ¼ 5=3, the
two algorithms yield very similar temporal and spatial behavior. In
such cases, the old algorithm is just as good as the new one and is
potentially more efficient.
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Appendix A. Alternate forms

If the only properties required of the gravitational energy flux
are that it satisfy Eq. (11) and have the correct physical dimen-
sions, then Fg is not unique. Energy conservation is not affected
by Fg ! Fg þ a if $ � a ¼ 0. For example,

a ¼ 1
4pG

$� /v �r/ð Þ:

More generally, for arbitrary vector fields b, the replacements

Fg ; Eg

 �

! Fg þ @tb; Eg � $ � b

 �

preserve @tEg þ $ � Fg and therefore preserve the energy-conserva-
tion law. In particular, if one chooses b ¼ �ð16pGÞ�1$ð/2Þ, then
starting from Eq. (13) for Fg and 1

2 q/ for Eg , one obtains the alter-
nate forms

Fg ¼ q/v � 1
4pG

_/$/; Eg ¼ q/þ 1
8pG

$/j j2: ðA1Þ

Because they differ by a divergence, the two forms of Eg yield the
same total gravitational energy when integrated over all space.

Additional criteria are clearly needed to select the ‘‘correct’’
forms of Eg and Fg . One such criterion is galilean covariance. The
energy density, energy flux, momentum density, and stress tensor
of a nonselfgravitating fluid are

E ¼ 1
2
qv2 þ u; F ¼ ðEþ pÞv; j ¼ qv; T ¼ qvvþ pI;

where u is internal energy per unit volume. Under an infinitesimal
galilean transformation ðv;q;p;uÞ ! ðv þ dV;q;p;uÞ, these densi-
ties and fluxes transform to first order in dV as

E! Eþ j � dV; j! jþ qdV;
F! Fþ EdV þ T � dV; T! Tþ 2j � dV: ðA2Þ

It seems reasonable to require that the gravitational contributions
to E;F, and T should preserve the form of this transformation. Since
the newtonian gravitational mass and momentum densities vanish
under any sensible definition, Eg and Tg should be galilean invari-
ants, while

Fg ! Fg þ EgdV þ Tg � dV: ðA3Þ

Because $/ and / are galilean-invariant, Tg [Eq. (8)] and both forms
of Eg are invariant. However, _/! _/� dV � $/, from which one can
show that the forms (A1) of Eg and Fg are compatible with (A3),
whereas the original forms Eg ¼ q/=2 and Fg as given by Eq. (13)
are not.

No matter what definitions are used for ðEg ; Fg ;TgÞ, the same
time evolution results if the conservative equations are solved ex-
actly, provided that the definitions are mathematically equivalent
to the original equations of motion Eqs. (1)–(4). However, the spa-
tial distribution of gravitational energy and stress will depend
upon the inertial frame used, and it is possible that numerical trun-
cation errors may be sensitive to this dependence. The whole point
of the present exercise is recast the equations so as to improve en-
ergy conservation in finite-difference or finite-volume approxima-
tions. Viewed in this light, numerical robustness becomes more
important than formal elegance. We mistrust the form (A1) of
the gravitational energy density because it is always non-negative
in vacuum or near-vacuum regions: thus a small local error in the
estimate of j$/j2=8pG could cause a large error in the update of the
kinetic or internal energies per unit mass. The original form
Eg ¼ q/=2 does not have this defect because it tends to zero
smoothly with the mass density.

If it is important both that the gravitational terms be locally gal-
ilean covariant and that Eg ¼ q/=2, then we may keep Eq. (13) for
Fg but replace the gravitational stress tensor (8) with

~Tg ¼
1

8pG
ð$/Þð$/Þ � /$$/½ � þ 1

2
q/I: ðA4Þ

The difference between (8) and (A4) can be written as

~Tg � Tg ¼
1

16pG
Ir2 � $$
h i

/2: ðA5Þ

Since the divergence of (A5) vanishes, the gravitational momentum
density remains zero if Tg is replaced by ~Tg .
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