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ABSTRACT

We introduce a new computational method for embedding Lagrangian sink particles into a Eulerian calculation.
Simulations of gravitational collapse or accretion generally produce regions whose density greatly exceeds the
mean density in the simulation. These dense regions require extremely small time steps to maintain numerical
stability. Smoothed particle hydrodynamics (SPH) codes approach this problem by introducing nongaseous,
accreting sink particles, and Eulerian codes may introduce fixed sink cells. However, until now there has been no
approach that allows Eulerian codes to follow accretion onto multiple, moving objects. We have removed that
limitation by extending the sink particle capability to Eulerian hydrodynamics codes. We have tested this new
method and found that it produces excellent agreement with analytic solutions. In analyzing our sink particle
method, we present a method for evaluating the disk viscosity parameter � due to the numerical viscosity of a
hydrodynamics code and use it to compute � for our Cartesian adaptive mesh refinement (AMR) code. We also
present a simple application of this new method: studying the transition from Bondi to Bondi-Hoyle accretion that
occurs when a shock hits a particle undergoing Bondi accretion.

Subject headinggs: accretion, accretion disks — hydrodynamics — methods: numerical — shock waves
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1. INTRODUCTION

Simulations of gaseous collapse and accretion are ubiquitous
in astrophysics, and all of them face a common difficulty:
gravitational collapse leads to the formation of structures on
length scales very small compared to the initial collapsing
object. This leads to an enormous dynamic range that generally
makes the full problem computationally infeasible. Simu-
lations of star formation, for example, generally start with
observed molecular cloud cores that are �0.1–1.0 pc in size
(Williams et al. 2000), while the stars that are the endpoints of
the calculation are of order a solar radius (�1011 cm) in size, a
dynamic range of �107 in length.

Dynamic range is expensive for two distinct reasons. First,
one requires enough resolution elements (cells for gridded
codes, particles for gridless codes) to resolve both the largest
and smallest structures in the problem. For a Eulerian code
with no adaptivity, such as the widely used ZEUS package
(Stone & Norman 1992a, 1992b; Stone et al. 1992), increasing
the linear resolution of a calculation by a factor f requires
increasing the number of cells in each dimension f, thereby
increasing the total number of cells by a factor of f N , where N
is the number of dimensions. Lagrangian approaches, such as
smoothed particle hydrodynamics (SPH; Gingold &Monaghan
1977; Lucy 1977), and adaptive Eulerian approaches, such
as adaptive mesh refinement (AMR; Berger & Oliger 1984;
Berger & Collela 1989; Bell et al. 1994), fare significantly
better in this regard by following the mass and adding resolu-
tion elements only in regions of interest.

The second reason a large dynamic range is expensive is that
the smallest and largest structures present in a problem often
evolve on very disparate timescales, requiring a simulation to
take an inordinate number of very small time steps. In explicit
hydrodynamics codes this problem is embodied in the Courant
condition (Richtmyer & Morton 1967), which requires that the
time step be less than the signal-crossing time of a resolution
element. Increasing the linear resolution by a factor f therefore
generally requires multiplying the number of time steps by f as
well. Again, adaptive methods that allow different time steps
for different resolution elements (Bate et al. 1995) do some-
what better.

Even with the improvements in computational efficiency
made possible by adaptivity, however, many interesting prob-
lems require more dynamic range than any code can handle.
The time stepping constraint in particular is a significant bar-
rier because, unlike additional cells, the additional time steps
cannot easily be distributed on a parallel machine. Therefore
simulators have introduced sinks: regions of a flow that accrete
incoming material but that have no internal structure and
therefore no requirements for high resolution in either time or
space. Sinks provide a way to stop following collapse at a pre-
chosen scale (hopefully) without damaging the rest of the
calculation, thereby preventing the time step from grinding to
zero and the number of resolution elements from running off
to infinity.

Bate et al. (1995) introduced the technique of sink particles
in SPH codes. Sink particles are absorbers that accrete other
particles that approach within a certain distance and meet
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various other criteria. The accretion radius sets the smallest
scale that the simulation can resolve. The boundary pressure of
a sink particle is determined by extrapolation from the particles
around it. While this technique has proven extremely useful
and has been adopted in numerous places, SPH codes are not
appropriate for all problems. To date there is no widely used,
well-tested, SPH code that includes magnetohydrodynamics or
radiative transfer (although see Price & Monaghan 2004a,
2004b for a recent implementation of MHD with SPH that is
still in the testing phase). In addition, SPH codes require sig-
nificant artificial viscosity, which tends to cause artificial
heating and smearing at shocks and interfaces. SPH is therefore
of limited utility in problems where these features are impor-
tant (Shapiro et al. 1996).

In contrast, Eulerian codes including MHD or radiative
transfer are reasonably mature and, using Godunov schemes,
require much less artificial viscosity (Truelove et al. 1998).
Eulerian codes have included sinks in the form of sink cells
(Boss & Black 1982). Similar to sink particles, sink cells allow
mass to enter but not to leave, and their boundary pressures are
found by extrapolation from neighboring cells. The disad-
vantage to this approach is that sink cells are fixed in the grid
and are therefore inapplicable in cases where there are multiple
accretors moving relative to one another (for example, a binary
system) or where one does not know in advance where an
accretion center will form (for example, in star formation in a
turbulent medium).

In this paper we introduce a technique to embed a
Lagrangian sink particle in a Eulerian code. This technique
allows us to use Eulerian codes for cases where they are pre-
ferred while retaining the flexibility of a moving sink center.
While previous work has combined nonfluid particles with
Eulerian hydrodynamics (Kravtsov 2003), our approach is
unique in that it allows the nonfluid particles to accrete from
the gas and therefore truly act as sinks. In x 2 we introduce the
Eulerian AMR code and describe the method we use to embed
Lagrangian sink particles within it. In x 3 we describe tests that
we have done to evaluate the accuracy of this method. In
discussing our test of a sink particle in the context of a disk,
in x 3.4.2 we estimate the standard viscosity parameter �
(Shakura & Sunyaev 1973). We then consider a simple appli-
cation of our technique in x 4: modeling the process of a flow
changing from Bondi accretion to Bondi-Hoyle accretion as a
result of an external shock. Finally, we discuss our conclusions
in x 5.

2. COMPUTATIONAL METHODOLOGY

2.1. The Eulerian Code

For the calculations presented in this paper we use our
three-dimensional AMR code. The code includes hydrody-
namics, gravity, and radiative transfer, but we refer only to the
first two components in this paper. The hydrodynamics mod-
ule solves the Euler equations for a compressible, multifluid
system,
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where �i, Pi, and e i are the density, thermal pressure, and
nongravitational specific energy for fluid i, and v is the vector
velocity (taken to be the same over all fluids). We determine
the potential � by solving the Poisson equation as described
below. The code solves these equations using a conservative
high-order Godunov scheme with an optimized approximate
Riemann solver (Toro 1997). The algorithm is second-order
accurate in both space and time for smooth flows, and it
provides robust treatment of shocks and discontinuities.
The gravitational module solves the Poisson equation

92� ¼ 4�G
X
i

�i ð4Þ

on an adaptive grid hierarchy (as described below) to find the
gravitational potential from a given density distribution. In
each time step we compute the potential and then use it as a
source term in the hydrodynamics equations as shown above
(Truelove et al. 1998). The gravity module uses a multigrid
iteration scheme to solve the linearized Poisson equation on
each level of the adaptive hierarchy.
Each physics module operates within the AMR framework

(Berger & Oliger 1984; Berger & Collela 1989; Bell et al.
1994). We discretize the problem domain onto a base, coarse
level, denoted level 0. We dynamically create finer levels,
numbered 1, 2, : : : , n, nested within that coarse level as
needed. The nesting process is recursive, so each fine level may
contain even finer levels, providing no theoretical upper limit
to the maximum resolution. In practice, limits of computational
resources require that we select a maximum level of refinement
allowed for a given calculation. The process for a time step is
similarly recursive: one advances level 0 through a single time
step �t0, then advances each subsequent level for the same
amount of time. Each level has its own time step, and in general
�tlþ1<�tl, so after advancing level 0 we must advance level 1
through several steps of size �t1, until it has advanced a total
time �t0 as well. At that point we apply a synchronization
procedure to guarantee conservation of mass, momentum, and
energy across the boundary between levels 0 and 1. However,
each time we advance level 1 through time �t1, we must ad-
vance level 2 through several steps of size �t2 and so forth to
the finest level present.
The sink particle framework we present below is not de-

pendent on any of the details of the AMR framework and may
be applied equally well to fixed-grid codes. Therefore, we
suppress discussion of AMR details. However, we note here
that we add a condition to our refinement criteria requiring that
a sink particle’s accretion zone (see x 2.4.2) always be refined
to the highest allowable level for a given calculation. If the
sink particle is moving, the refined patch will move with it. We
also refine a buffer region around the accretion zone to guar-
antee that the accretion zone cannot move out of the refined
area in the interval between recalculations of the grid. When
we refer to cell spacings and time steps in what follows, the
cell spacings are always those of the finest AMR level. In
addition, for simplicity we also suppress all discussion of
multifluid issues.

2.2. Creation of Sink Particles

We can either introduce sink particles in the initial con-
ditions for a calculation or create them when necessary. Once
we introduce a sink particle, we lose all knowledge of the flow
in some region around it and assume that the gas within that
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region will continue to collapse beyond the scale resolved by
our simulation. We therefore wish to introduce sinks only when
there is good physical reason to believe that continuing the
calculation without the sink will give inaccurate results and
that the gas in the vicinity of the sink is likely to continue
collapsing past the scales resolved in our calculation.

Both of these conditions are met in cells that violate the
Jeans criterion (Truelove et al. 1997, 1998):

�x < JkJ ¼ J

ffiffiffiffiffiffiffiffi
�c2s
G�

s
: ð5Þ

Here, J is a constant of order unity, kJ is the Jeans length in
a cell of length �x, and cs and � are the sound speed and
density in the cell. Truelove et al. (1997) found that J ¼ 0:25
is sufficient to prevent artificial fragmentation in most of the
problems they considered. We can also write this as a condi-
tion on the density for fixed �x,

�J < J 2
�c2s

G�x2
: ð6Þ

If the density in any cell does exceed �J with J ¼ 0:25, we
create in the center of that cell a sink particle with mass

msink ¼ �� �J 0:25ð Þ½ ��x3; ð7Þ

so the density of the gas remaining in the cell is �J 0:25ð Þ. We
also transfer a proportional amount of momentum and energy
from the gas to the sink particle.

Truelove et al. (1997) have shown that continuing a calcu-
lation that has violated the Jeans criterion will lead to artificial
fragmentation. By creating sink particles in cells that violate
the Jeans condition we prevent this from occurring. Also, since
the density in the cell must have been lower in the time step
before the sink particle has appeared, it follows from continuity
that:= v< 0 in that cell. The fact that the cell violates the Jeans
criterion indicates that its self-gravity has begun to become
important. It is therefore likely that the gas in that cell will
continue collapsing indefinitely. Thus, creating sinks in cells
that violate the Jeans criterion meets the conditions that we
create sinks only when necessary and only when we are con-
fident that indefinite collapse is a valid approximation to the
true behavior of the system. Note that these criteria are roughly
analogous to those used by SPH codes (Bate et al. 1995;
Bromm et al. 2002) to create sink particles: the particle must be
in a region of converging flow that is gravitationally bound.

There is one cautionary note: for a cell to violate the Jeans
criterion, its mass must be at least

mcell >��x3 ¼ �3=2J 3
c3s

G3�ð Þ1=2
; ð8Þ

where in the last step we eliminate �x using equation (5).
In comparison, the maximum mass possible for a stable,
self-gravitating, isothermal object is the Bonnor-Ebert mass
(Ebert 1955; Bonnor 1956), mBE ¼ 1:18c3s = G 3�ð Þ1=2. A Jeans-
violating cell (for J ¼ 0:25) therefore has a minimum mass of

mcell >
�3=2

1:18
J 3mBE � 0:07mBE: ð9Þ

While the addition of neighboring cells will likely raise the
total mass in the region above the Bonnor-Ebert mass, it is
therefore still possible to create a sink particle in a region that
is stable against collapse. However, a newly created sink par-
ticle has a very low accretion rate (see x 2.4.1). If the region
is truly stable, gas will not continue to accrete onto the sink
and the sink’s mass will remain very low. We thus have an ex
post facto check on the validity of our sink particle creation
method. If such a situation occurs, there is no way to do the
calculation at the chosen level of resolution without violating
the Jeans condition or creating a suspiciously small sink par-
ticle. The only choice is to redo the calculation at a higher
resolution.

2.3. MergginggSink Particles

In a region of gravitational collapse, we often find that in a
single time step a block of contiguous cells increases in density
so that they all violate the Jeans condition and create sink
particles. When this happens we wish to merge these particles,
since allowing them to remain unmerged and possibly separate
would risk a solution that contains resolution-dependent arti-
ficial fragmentation. In addition, when a sink particle is first
created, gas usually continues to flow into the sink particle’s
host cell and its neighbors. Since a newly created sink par-
ticle’s mass and rate of gas accretion (see x 2.4.1) are very low,
after each time step or two these cells will once again violate
the Jeans condition. As a result, the code will create more sink
particles, which ought to be merged into the already existing
one. (This process generally continues until the sink particle is
massive enough that its gas accretion rate prevents the density
in the host cell from rising above the Jeans density.)

To deal with this phenomenon, at the end of each time step
we group all the sink particles present in the calculation using
a friends-of-friends (FOF) algorithm (Davis et al. 1985) with
a linking length equal to the radius of the accretion zone (see
x 2.4.2). We then merge all groups of particles that the FOF
algorithm finds. We replace the merged group by a single
particle at the center of mass of the group, and we add all
particle quantities conservatively. Later on in the calculation, if
two independently formed objects pass near one another for a
short period, we may not wish to merge them. In this case we
can temporarily reduce the radius of the accretion zone (which
for technical reasons must be no larger than the merger radius)
during the close passage and increase it again once the objects
are sufficiently far apart. Since sink particles moving under
gravity will spend very little time during a close passage, this
will have a negligible effect on the overall accretion rate or
final mass. This adjustment to the merger radius can be handled
either manually or by an automated algorithm.

2.4. Accretion onto Sink Particles

2.4.1. The Accretion Rate

Once it appears, a sink particle accretes gas from the sur-
rounding cells. The gas in which the sink particle is embedded
continues to evolve according to the Euler equations. Setting
the accretion rate is therefore critical in cases where the flow
onto the sink particle is subsonic, because the rate at which
mass flows from Eulerian cells to the pressureless particle
determines the amount of back-pressure opposing the accretion
flow. The accretion formalism thus serves a function analogous
to the extrapolation procedure used to find boundary pressure
in SPH sink particle or Eulerian sink cell formalisms.
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We characterize the relative importance of pressure versus
gravity via the particle’s Bondi-Hoyle radius (Bondi 1952),

rBH ¼ GM

v21 þ c21
; ð10Þ

where M is the particle’s mass and v1 and c1 are the velocity
and sound speed of the gas far from the sink particle.

In the limit where the Bondi-Hoyle radius is much larger
than a cell spacing, the choice of accretion rate and hence the
pressure is irrelevant because the flow is supersonic near the
sink particle. Even if the accretion rate is set too small, gas will
flow into the sink particle’s host cell until its density is high
enough to violate the Jeans condition. Once that happens, the
code will create new sink particles that will immediately merge
with the existing particle, thus setting an effective accretion
rate higher than that given by the formula. In the opposite
limit, rBHT�x, the sink particle is simply a point mass
moving through a uniform gas. Its gravity is relevant only on
scales smaller than we resolve in the simulation. This is just
the classical Bondi-Hoyle-Lyttleton problem, which has ana-
lytic solutions in the limits v1Tc1 and v13 c1 (Hoyle &
Lyttleton 1939, 1940a, 1940b, 1940c; Bondi 1952). In be-
tween these two limits, Ruffert (1994a) and Ruffert & Arnett
(1994) give the approximate formula

Ṁ ¼ 4��1G2M 2 k2c21þ v 21

c21þ v21
� �4

" #1=2

¼ 4��1r 2BH k2c21þ v 21
� �1=2

:

ð11Þ

Here k is a constant of order unity that depends on the equation
of state of the gas. For an isothermal gas, k ¼ e3=2=4 � 1:120,
and we use that value throughout this work.

For a real simulation with complex, turbulent flows, there is
no obvious way to choose v1. For symmetric accretion flows,
the gas in the sink particle’s host cell is generally comoving
with the background at large distances. Since we have no better
alternative, we therefore take v1 to be the relative velocity of
the sink particle and the gas in its host cell. Similarly, we use
sound speed in the host cell for c1. The choice of �1 requires
more discussion. We let ourselves be guided by the behavior
we expect when simulating simple Bondi accretion. In that
case, the density profile, which we denote by � (x) � �(x)=�1,
is the solution to a pair of coupled nonlinear ordinary differ-
ential equations (Bondi 1952). Here x � r=rBH is the dimen-
sionless radius. The density in the central cell should be
��1� �x=rBHð Þ. We therefore set

�1 ¼ �̄

� 1:2�x=rBHð Þ ; ð12Þ

where �̄ is the weighted mean density in the accretion region
(see x 2.4.2). In the limit �x3 rBH, � 1:2�x=rBHð Þ ! 1, so
we recover the correct behavior for this case. We inserted the
factor of 1.2 because we found that it gave improved results in
the intermediate range �x � rBH (see x 3.2). The accretion
rate is reduced in the presence of rotation, as described in
x 2.4.2.

As a final note, Ruffert (1994b) gives a somewhat more
complex formula than equation (11) that provides a slightly
better fit to accretion rates found in their numerical simu-
lations. However, even that formula is off by as much as 60%
for isothermal flows with intermediate Mach numbers (Ruffert

1996), and thus we decided against the additional complexity
involved in implementing it. Fortunately, as we discuss in
x 3.3, errors in the accretion formula tend to be self-correcting
in an actual simulation, and thus the details of the accretion
formula are not critical.

2.4.2. The Accretion Zone

We wish the accretion rate to change smoothly as the sink
particle moves across cell boundaries. Therefore we define an
accretion zone around each sink particle. We set the accretion
rate based on average properties in the accretion zone, and
when the sink particle accretes mass, it does so from all cells
within the accretion zone. In choosing the size of the accretion
zone, there are two competing factors. Since the solution
within the accretion zone is artificially affected by the accretion
process, the larger the accretion zone, the larger the region in
which we give up on the accuracy of the solution. However,
in order to compute accurately the rate at which mass enters
the accretion zone, we must have adequate resolution on its
boundary. In addition, the size of the accretion zone will de-
termine our ability to resolve anisotropies in the accretion flow.
We define the accretion region as all the cells within a radius
racc of the sink particle’s host cell. Based on experiments with
different sizes, we adopt a value racc ¼ 4�x throughout this
work. However, our implementation of the sink particle algo-
rithm leaves the radius of the accretion region as a free pa-
rameter to be set at run time.
In cases where the particle’s Bondi-Hoyle radius is smaller

than the accretion zone, it would be incorrect to set the ac-
cretion rate based on a uniform average of all cells, however.
Therefore we define an accretion kernel with radius

rK ¼
�x=4 rBH < �x=4;

rBH �x=4 � rBH � racc=2;

racc=2 rBH > racc=2:

8><
>: ð13Þ

Within the accretion zone we assign each cell a weight

w / exp �r 2=r 2K
� �

; ð14Þ

where r is the distance from the cell center to the sink particle;
cells outside the accretion zone have a weight of 0. The min-
imum value of �x=4 for rK ensures that the accretion changes
smoothly as the particle crosses cell boundaries even when rBH
is small. The maximum value of racc=2 ensures that cells at the
edge of the accretion region have little weight and thus there
are no sudden changes in the accretion rate as cells enter or
leave the accretion region. Once we have assigned weights to
all cells in the accretion zone, we use a weighted average to set
�̄ in equation (12). We then compute the accretion rate for this
time step from equation (11). Note that this procedure becomes
undefined if the accretion zones of multiple sink particles
overlap; for this reason we require that the sink particle merger
radius always be greater than or equal to the accretion zone
radius.
Thus far our algorithm has not included the effects of

angular momentum, which may substantially reduce the ac-
cretion rate relative to the spherically symmetric case. Fur-
thermore, in a rotating flow, low angular momentum gas along
the polar axis accretes more easily than high angular momen-
tum gas in the equatorial plane. Thus, it would be incorrect to
use an accretion algorithm that accretes equally quickly from
all cells regardless of their place in the rotating flow. We
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therefore choose a strategy that will both reduce the accretion
rate in the presence of rotation and allow accretion to occur
anisotropically from within the accretion zone.

To include rotation, we first divide the mass to be transferred
to the sink particle (computed via eq. [11]) among the cells in
the accretion zone so that each cell contributes an amount of
mass proportional to its weight (computed via eq. [14]). We
then divide each cell into 83 identical point particles arranged
in a uniform grid throughout the cell, each with 1/83 the mass,
momentum, and energy of the cell. For each point particle we
compute its distance of closest approach to the sink particle if
it were to travel on a purely ballistic trajectory while the sink
particle moved at constant velocity. For a point particle with
specific angular momentum jsp and specific energy esp (kinetic
plus gravitational) in the sink particle’s rest frame, this dis-
tance is

rmin ¼ �GM

2esp
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 jspesp

GMð Þ2

s" #
: ð15Þ

If the point particle is not bound to the sink particle, so that
esp > 0, we take rmin ¼ 1. We do not want the sink particle to
accrete material that has too much angular momentum to reach
its ‘‘surface.’’ We therefore count up the number n of point
particles for which rmin >�x=4 and reduce the amount of
mass to be accreted from that cell by a factor n/83. (The factor
of 4 in rmin is to ensure that the sink particle has an effective
size smaller than the size of a cell; experimentation with dif-
ferent values from 0.1 to 0.5 produced no noticeable differ-
ences in behavior). For the host cell, since we cannot compute
a meaningful specific angular momentum, we set n equal to
the maximum of the values of n in the cells bordering the host
cell if rK ��x=4, or n ¼ 0 (i.e., uninhibited accretion) if
rK <�x=4. Once this is done we subtract the appropriate
amount of mass from each cell and add it to the sink particle.
To ensure stability, we also set an absolute cap that no more
than 25% of the mass may be removed from a cell in any
single time step.

Next we must compute the amount of linear momentum the
sink particle accretes. Since it represents an object far smaller
than the grid size in the calculation, it should accrete negli-
gible angular momentum and exert no torques on the gas. We
therefore divide each cell’s momentum, taken in the sink
particle’s rest frame, into components parallel and transverse
to the radial vector connecting that cell to the sink particle. We
reduce the cell’s radial momentum by a factor equal to the
fraction of the cell’s mass that we have accreted, while we
leave its transverse momentum unchanged. Thus, accretion
preserves the radial velocity and the angular momentum of the
gas. To ensure linear momentum conservation, we change the
sink particle’s momentum by an amount equal and opposite to
the total change in the momentum of the gas cells. Finally, we
compute the new total energy of each gas cell by keeping the
cell’s specific thermal energy constant while computing a new
kinetic energy based on its new density and momentum.

We find that this accretion procedure conserves mass, mo-
mentum, and angular momentum to machine precision. How-
ever, for more discussion of angular momentum conservation,
see x 3.4.

2.5. Motion of Sink Particles

In each time step we update the position of each sink particle
based on its current momentum, and we modify its momentum

through accretion (as described in x 2.4.1) and through gravity.
For reasons of algorithmic speed, we handle the position and
momentum update of sink particles in two steps. First, we
change the momenta of sink particles due to their gravitational
interactions with the gas by an amount Fgas-part�t, where �t is
the time step and Fgas-part is the gas-particle gravitational force.
To ensure accuracy, we constrain the time step to require that

max vpart
� �

�t<C�x; ð16Þ

where max vpart
� �

is the largest particle velocity in the calcu-
lation, C is a constant of order unity (for our runs generally
0.5), and �x is a cell spacing. This restriction is usually less
stringent than the ordinary gas Courant condition. Particles
have velocities comparable to the gas out of which they form,
and the collapsing gas from which sink particles form is
usually not the gas that has the highest velocity relative to the
grid.

To compute the force on a particle, we use a Plummer law
(Aarseth 1963),

Fgas-part ¼ �Gm

Z
�

r2 þ �2
r

r
dV ; ð17Þ

where m is the mass of the particle, � is the gas density, r is
the vector from the sink particle to a given cell or particle, and
� is the softening length, which we leave as a parameter that
may be set at run time. In general, the softening length should
be smaller than the size of the accretion region, to ensure that
softening does not alter the rate at which gas crosses its
boundary. Choosing a smaller softening length, however, in-
creases the maximum velocity the gas will attain within the
accretion region as it falls onto a sink particle, which will in
turn decrease the time step due to the Courant condition. For
our default choice of racc ¼ 4�x, we therefore set a default
value of � ¼ 2�x. Since the number of particles is generally
small, we compute gas-particle forces via a direct sum. In
computing the force between a particle and the gas, we treat all
cells except the particle’s host cell and its neighbors as point
masses located at the cell center. To compute the gravitational
force between a sink particle, its host cell, and its neighboring
cells, we subdivide each cell into 83 identical point particles, as
described in x 2.4.2. We set the force between the cell and the
sink particle equal to the sum of the forces between the sink
particle and the 83 point particles.

The second step is to update the positions andmomenta of the
particles, including the effects of particle-particle interactions.
We handle this step separately because particles may occa-
sionally pass close to one another, within a few cell spacings.
When this happens, a time step chosen via equation (16) may
allow the particles to change their separation by a significant
amount in a single update. In this case, a simple first- or second-
order position and momentum update will not provide an
accurate integration of the particle orbits. However, since com-
puting gas updates is far more expensive than computing par-
ticle updates, we do not wish to reduce our overall time step and
compute more gas updates. Instead, we integrate the particles
forward through a time �t using a Bulirsch-Stoer method
with an adaptive time step and error control (Press et al. 1992,
p. 724). During this integration, we consider only particle-
particle gravitational interactions, which, as with the particle-
gas interactions, we compute via a direct sum. Unlike with
particle-gas interactions, we do not use a softened force law
for particle-particle interactions. We have tested this method
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by placing two particles in an extremely eccentric orbit (e ¼
0:998), where the closest approach of the particles is ��x/100
and the gas density and temperature are chosen so that accretion
is negligible. In this test we found that after several orbits the
semimajor axis was conserved to �1% and the eccentricity to
�0.1%.

3. TESTS OF THE METHODOLOGY

3.1. The Collapse of an Isothermal Sphere

We have tested this method against the analytic solution for
the collapse of an isothermal sphere with a density 10% above
the critical value (Shu 1977). We consider a 1 M� sphere of
molecular H and He mixed in the standard cosmic abundance
(mean particle mass of 2:33mp) with a sound speed of 0.18 km
s�1, appropriate for �10 K gas. To avoid the singular initial
configuration of the Shu solution, we set our initial density and
velocity profile to their analytic values after a time t ¼ 1:3 ;
1012 s, when the expansion wave has propagated 2:4 ; 1016 cm,
or eight cells, from the origin. There are 64 cells in the radius of
the sphere, and the sphere is motionless and centered on the
origin. To ensure that there are no problems when the sink
particle crosses cell boundaries, we ran two more tests with
identical setups except that we gave the isothermal sphere an
initial uniform velocity relative to the grid. In one test we used
an advection velocity of half the sound speed, and in the other
twice the sound speed.

The density and velocity profiles that we find from these
tests are shown in Figure 1, and the mass of the sink particle
versus time is shown in Figure 2. The calculation reproduces
the analytic solution extremely well. Errors in the velocity and
density profiles are a few percent in the cells adjacent to the
accretion region, dropping rapidly to �1% as one moves far-
ther away. The advected cases show a small initial transient
during which the accretion rate deviates from the theoretical
value, but after a time of less than the sound-crossing time of
the accretion region the flow settles into a steady state. Once
this happens, the error in the accretion rate is �1% in all three
runs. There is also a slight asymmetry near the sink particle

visible in the test advected at Mach 2. Relative to the unad-
vected and subsonically advected cases, there is a few percent
higher density and lower velocity in the region trailing the sink
particle (relative to its motion on the grid), and a difference of
the opposite sign ahead of the sink particle. However, the mass
flux into the accretion region seems to be fairly symmetric,
since the errors in density and velocity are of similar magnitude
and opposite sign. The asymmetry in the supersonically ad-
vected run does not have any noticeable effect on the time-
averaged accretion rate, which differs from the other two runs
and from the theoretical solution by only �1%.

3.2. Bondi Accretion

To test how well our sink particle formalism works in cases
where our resolution is marginal, so that rBH � �x, we ran a
series of simulations of simple Bondi accretion using a variety
of values for rBH=�x. In each case we use a sphere of mixed
H and He at 10 K with a radius of 1:21 ; 1019 cm. For 32 cells
across the radius of the sphere and a 1 M� central star this
gives �x ¼ rBH. We initialize the density and velocity profile
of the sphere to the analytic solution for the Bondi problem
and allow the calculation to run until the accretion rate reaches
steady state. We then repeat the calculation with different sink
particle masses and compare the accretions rates to the theo-
retical predictions. The results are shown in Table 1.
As the table indicates, there can be a substantial error in the

accretion rate when the Bondi radius of the sink particle is

Fig. 1.—Results of our isothermal sphere test. (a, b) Density and velocity
vs. radial distance in the sink particle’s rest frame. (c, d ) Fractional error in
density and velocity. All quantities are plotted along the direction of the sink
particle’s motion. In the top panels, the analytic solution is the solid line. In all
panels the crosses show values from the unadvected run, the asterisks show
values from the run advected at Mach 0.5, and the diamonds show values from
the run advected at Mach 2. The simulation data stop at the edge of the sink
region. All the plots are at time t ¼ 2:0 ; 1012 s.

Fig. 2.—Mass of the sink particle vs. time. Solid line: Theoretical result.
Crosses: Values from the unadvected run. Asterisks: Values from the run
advected at Mach 0.5. Diamonds: Values from the run advected at Mach 2.

TABLE 1

Simulated versus Theoretical Accretion Rates for Bondi Accretion

Msink

(M�)
(1)

rB /�x

(2)

Ṁtheor

(M� yr�1)

(3)

Ṁsim

(M� yr�1)

(4)

Ṁ Error

(5)

0.1............... 0.1 5.94 ; 10�13 6.01 ; 10�13 0.011

0.316........... 0.316 5.94 ; 10�12 5.90 ; 10�12 �0.006

1.0............... 1.0 5.94 ; 10�11 5.21 ; 10�11 �0.122

3.16............. 3.16 5.94 ; 10�10 4.49 ; 10�10 �0.244

10.0............. 10.0 5.94 ; 10�9 5.76 ; 10�9 �0.023

Notes.—Col. (1): Sink particle mass. Col. (2): Ratio of the Bondi radius to
a grid spacing. Cols. (3) and (4): Theoretical and simulated accretion rates.
Col. (5): Fractional error in the simulated accretion rate.
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comparable to a cell spacing, but the error drops off rapidly as
the Bondi radius either increases or decreases. The peak error
of �25% seems to occur when the Bondi radius is approxi-
mately equal to the radius of the accretion zone, i.e., the case
rB ¼ 101=2�x � racc. For a factor of 10 difference in rB and
racc the error is �1%, while for even a factor of a few dif-
ference the error is only �10%. We experimented with several
factors of order unity in equation (12), where we set �1, to see
if we could decrease the error. We found that 1.2 gave the best
results but that other factors between 0.5 and 2.0 increased the
error in the accretion rate by no more than �10%.

This substantial error when rB � racc is not particularly
surprising. The Bondi radius is the point at which the flow
transitions from subsonic to supersonic. If that is equal to the
accretion radius, inside which we are artificially altering the
physics, then the transition is not well resolved and the density
and velocity in cells near the sink particle will have substantial
errors. These errors lead the code to set an incorrect accretion
rate, which in turn compounds the problem by setting a back-
pressure that is too large. When the flow near the sink particle
is either subsonic or supersonic, this problem does not occur
and the errors are far smaller. Nonetheless, this provides an
important caveat to our method: one ought not use it in cases
where the flow at the sink particle is transitioning from sub-
sonic to supersonic.

3.3. Bondi-Hoyle Accretion

We tested the ability of our sink particle method to handle
accretion from a moving medium by simulating Bondi-Hoyle
accretion. We place a 1M� sink particle in an initially uniform
gas, composed of a standard interstellar mix of H and He (mean
particle mass of 2:33mp) at 10 K, with a density of 10�25 g
cm�3. We performed two versions of this simulation. In one,
the sink particle is initially stationary with respect to the
computational grid, and the gas flows past it at Mach 3; we
apply inflow boundary conditions in the upstream direction
and outflow boundary conditions in the downstream direction.
In the second version, the gas is initially at rest with respect to
the grid, and the sink particle moves at Mach 3 at an angle of
30	 relative to the x-axis, in the xy-plane. In this case, we used
symmetry boundary conditions. In both cases the resolution of
the finest cells in the calculation is 7:4 ; 1014 cm ¼ rBH=50,
where rBH is as defined by equation (10).

Using equation (11), the expected accretion rate is ṀBH ¼
1:7 ; 10�12 M� yr�1. However, this simulation is in a regime
where the interpolation formula works poorly. Ruffert (1996)
performed a simulation very similar to ours (the run labeled
GS, which has a small accretor, gas with polytropic index � ¼
1:01, M ¼ 3) and found an accretion rate of 2:0 ; 10�12 M�
yr�1 ¼ 1:17ṀBH, where we have scaled their dimensionless
result to our dimensional parameters. Ruffert (1996) also found
that both the accretion rate and the flow pattern are time de-
pendent and that the flow pattern shows substantial devia-
tions from axial symmetry on scales comparable to rBH. The
mechanism for disrupting steady, symmetric flow is not fully
understood, but Foglizzo & Ruffert (1999) suggest Rayleigh-
Taylor and Kelvin-Helmholtz instabilities at the shock front as
the probable cause.

Figure 3 shows the system near the end of our simulations.
As expected, the flow is time dependent and unstable, with no
axial symmetry. One can clearly see the gravitational focusing
of streamlines into a shock behind the accretor that is charac-
teristic of Bondi-Hoyle accretion. Since the exact morphology
is a product of instabilities, we do not expect the two simu-

lations to have identical appearances. However, the overall
structure of the flow appears to be very similar in the two
simulations. Both runs show clear Mach cones, with similar
opening angles, similar densities, and similar velocities.

Figure 4 shows the accretion rates as a function of time. In
both cases the accretion rate requires several Bondi-Hoyle
times, defined by tBH � rBH=cs ¼ 6:35 ; 104 yr, to reach an
equilibrium value, and even then it shows substantial fluctua-
tions. In the run with the sink particle initially at rest, the
accretion rate starts increasing sooner, but later on the other run
passes it and shows a somewhat higher accretion rate. In both
cases, the accretion rate appears to reach equilibrium after
�6tBH; the average accretion rate after that point is 1:95 ;
10�12 M� yr�1 ¼ 1:15ṀBH in the run with the stationary sink
particle and 2:14 ; 10�12 M� yr�1 ¼ 1:26ṀBH in the run with
the moving sink particle. The former agrees with the results
of Ruffert (1996) to 2.1%, and the latter to 7.8%. In both cases
the difference between the mean accretion rate we find and
the Ruffert (1996) result is smaller than the fluctuations in the
accretion rate (which are typically a few tens of percent), so the
agreement is good.

This test demonstrates that our method produces correct
results for nonsymmetric, time-dependent flows. It also illus-
trates an important point regarding our accretion formula,
equation (11): the method is self-correcting, and thus the exact
details of the accretion formula do not make much difference as
long as the Bondi-Hoyle radius is well resolved. The formula
uses our best guesses for v1 and �1 based on the character-
istics of the flow; however, it would be unreasonable to expect
our method to correctly guess these values to the level of

Fig. 3.—Density and velocity fields in the xy-plane at t � 12tBH. Top: Run
with the sink particle at rest. Bottom: Run with the sink particle moving relative
to the grid. The bottom plot is in a coordinate system comoving with the sink
particle. The black borders indicate the boundary of the accretion zone. [See the
electronic edition of the Journal for a color version of this figure.]
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accuracy necessary for the formula to reproduce the Ruffert
(1996) result. Even if our guesses for v1 and �1 were perfectly
accurate, equation (11) would still predict an accretion rate
15% lower than Ruffert (1996) found and we find in our sim-
ulations. Instead, the accretion rate is ultimately dictated by the
rate at which the ordinary, unaltered hydrodynamics of our
simulation brings gas into the accretion region. If equation (11)
sets an accretion rate that is too low, gas will enter the region
faster than it is removed by accretion, so our guess for �1
will increase and the sink particle will consume gas more
quickly. The opposite effect happens if equation (11) dictates
that gas be removed too quickly. Thus, our accretion rate is
self-correcting.

3.4. RotatinggFlows

3.4.1. Sink Particle Results

Finally, to ensure that our method does not cause artificial
accretion or angular momentum transport, we tested the evo-
lution of a disk around a sink particle. We place a 1 M� sink
particle at the center of a thin 10 K gas disk with a radius
r0 ¼ 2 ; 1015 cm and a power-law surface density profile � ¼
�0(r0=r)

k� , with �0 ¼ 0:1 g cm�2 and k� ¼ 1. The grid is
chosen so that the finest cells are 2:1 ; 1013 cm in length. The
disk is in Keplerian rotation, and so the surface density should
not change with time. We simulated the evolution of the disk
for at least 50 orbital periods at the edge of the accretion
region. We ran two versions of the test, one with the sink
particle at rest relative to the grid, and one with the disk and
sink particle advected across the grid at Mach 10 at an angle
of (�; �) ¼ (30

	; 30
	
).

We also attempted a run with the disk advected at Mach 100
but found that the accumulation of truncation errors caused by
the rapid motion of the disk across the grid leads to distortions
in the disk shape after 30–40 orbits. The distortions are small
near the accretion region and larger farther away, and do not
appear to be related to the sink particle; this instead appears to

be a limitation in the ability of our hydrodynamic code to
handle extremely supersonic advection. Thus, we do not dis-
cuss that test further.
In analyzing this test, it is crucial to separate the effects of

the sink particle from those of ordinary numerical viscosity. As
one approaches the sink particle, the circles in which the gas is
flowing are resolved by fewer and fewer cells. Numerical
viscosity therefore becomes significant and will cause angular
momentum transport. This effect causes evacuation of the gas
in the disk near the sink particle, with some of the gas falling
toward the center and the rest pushed outward. Nelson et al.
(2000) and Okamoto et al. (2003) report an analogous phe-
nomenon in SPH calculations, as do Kuznetsov et al. (1999) in
a three-dimensional Eulerian code gridded inhomogeneously
in spherical coordinates. To disentangle this effect from pos-
sible artificial angular momentum transport due to the sink
particle, we ran a third simulation in which we disabled ac-
cretion onto the sink particle; we only performed this run with
the sink particle at rest relative to the grid, not with an advected
sink particle. Because the sink is far more massive than the
disk, it does not move significantly during the calculation.
Thus, the sink particle’s sole effect in this run is to impose a
point gravitational potential.
First, we compare the advected and unadvected runs with

accretion turned on to ensure that there are no ill effects from
motion of the sink particle across the grid. Figure 5 shows the
surface density of the two runs at similar times. One can see in
both images that the disks have remained circular and that there
is no visible distortion near the sink particle. Figure 6 compares

Fig. 4.—Accretion rate as a function of time in our simulations of Bondi-
Hoyle accretion. The points are sampled at intervals of �tBH=5. Time is plotted
in units of tBH ¼ 6:35 ; 104 yr, and accretion rate is plotted in units of
ṀBH ¼ 1:7 ; 10�12 M� yr�1. Crosses: Simulation with the sink particle sta-
tionary. Diamonds: Simulation with the sink particle moving. Dashed hori-
zontal line: Accretion rate predicted by Ruffert (1996).

Fig. 5.—Surface density of our simulated disks after a time of �50 orbital
periods at the edge of the accretion zone, r ¼ 5:55 AU. Top: Run with the sink
particle stationary on the grid. Bottom: Run with the sink particle advected
across the grid. The white outlines in the center of each plot show the ac-
cretion zone. In the bottom panel, x- and y-coordinates are measured relative
to the sink particle’s position. [See the electronic edition of the Journal for a
color version of this figure.]
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the azimuthally averaged surface density and slices of surface
density in the directions along and transverse to the sink par-
ticle’s direction of motion for the run with advection. The
difference between the surface density slices is a measure of the
asymmetry induced by motion of the sink particle. As the plots
show, the asymmetry can be tens of percent in cells adjacent to
the accretion zone but quickly drops to only a few percent as
one moves farther away. The difference between the slice and
the azimuthal average is not substantially larger along the ad-
vection direction than transverse to it. Thus, a moving sink
particle does not appear to induce substantial asymmetries.

Second, we compare the runs with and without accretion,
with the sink particle at rest relative to the grid, to determine
whether the sink particle has caused artificial angular mo-
mentum transport. Figure 7 shows the surface density versus
radius at nearly identical times in our three calculations. In the
simulation without accretion, there is a clear dip in the surface
density between about 5 and 20 AU. Some of this gas has fallen
into an unresolved hydrostatic object extending a few cells
from the origin, leading to a density enhancement there. The
rest has been pushed out farther into the disk, leading to the
alternating enhanced and diminished density between 45 and
70 AU. Examination of surface density profiles at other times
shows that this phenomenon is a wave moving out from the
origin, a result of material being pushed away from the sink
particle by numerical viscosity.

In both calculations with sink particle accretion, the surface
density matches the initial surface density well except within
about 20 AU of the sink particle, where it falls sharply. In these
cases, the gas being evacuated from the low-resolution region
around the sink particle has mostly been accreted. There is a
slight density enhancement just outside the evacuated region,
but it is smaller both in magnitude and in extent than in the
calculation with no accretion. Similarly, the wave caused by
material pushed outward from the origin is far smaller in the
simulations with accretion. In the calculations with and with-
out accretion the evacuated region is approximately the same
size. The small decrease in density at radii greater than 80 AU
apparent in all the simulations is a result of the pressure

boundary conditions on the disk and is unrelated to the sink
particle.

Figure 8 shows the size of the evacuated region of the disk,
revac, versus time. We define the edge of the evacuated region
as the smallest radius for which the surface density is 90% or
more of the initial surface density at that radius. In the simu-
lation without accretion, we exclude the inner four cells where
the hydrostatic gas has accumulated. As the plot shows, the
radius of the evacuated region is slightly less in the runs with
sink accretion than without. This indicates that the sink particle
is not causing enhanced accretion or angular momentum trans-
port. The sink particle may actually lead to better results by
preventing material that is artificially pushed outward by nu-
merical viscosity from escaping the accretion region and af-
fecting the rest of the calculation.

The size of the evacuated region is generally smaller by a
cell or two in the run advected relative to the grid than in the

Fig. 6.—Top: Azimuthally averaged surface density (unmarked line), sur-
face density sliced along the sink particle’s direction of motion (line with
crosses), and surface density sliced transverse to the direction of motion (line
with diamonds) for our run with the sink particle advected across the grid.
Bottom: Fractional difference between the slice and the azimuthal average. The
data for the slices end at the edge of the accretion zone. The distances r are
measured relative to the position of the sink particle. The plots are for a time of
�50 orbital periods at the edge of the accretion zone, r ¼ 5:55 AU.

Fig. 7.—Azimuthally averaged surface density vs. radius after 50 orbital
periods at the edge of the accretion region, r ¼ 5:55 AU, in simulations of disk
evolution around a sink particle. Line marked with diamonds: Run without sink
particle accretion. Line marked with crosses: Run with accretion where the sink
particle is stationary with respect to the grid. Line marked with asterisks: Run
with the sink particle advected relative to the grid. Unmarked line: Initial
surface density profile. The interval in radius between data points is one cell.

Fig. 8.—Radius of the evacuated region vs. time in simulations of disk
evolution around a sink particle. Line marked with diamonds: Run without
sink particle accretion. Line marked with crosses: Run with accretion that is
stationary relative to the grid. Line marked with asterisks: Run with the sink
particle advected relative to the grid.
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run that is stationary with respect to the grid. However, the
slope of the log revac log t relation is similar in the two runs.
The difference in the evacuation radius is therefore most likely
a result of advection causing an initial transient in the accretion
rate, similar to the phenomenon shown in Figure 2. Once the
transient passes, the evacuation radius moves outward in the
same manner in both the advected and unadvected runs.

3.4.2. Estimatingg� Due to Numerical Viscosity

As a side note, in the calculation with accretion, a power-
law fit to the radius of the evacuated region versus time gives

revac

�x
¼ 6:1

� raccð Þt
2�

� �0:23
; ð18Þ

where � raccð Þ is the angular velocity of the disk at the edge of
the accretion region; recall that we use racc ¼ 4�x in this
work. We can interpret this relation as a resolution require-
ment for the number of cells revac=�x as a function of total run
time t that we need to ensure that numerical viscosity does not
affect structures at a specified distance revac from the sink
particle. We can also compute an approximate viscosity pa-
rameter � for this effect. For an isothermal Keplerian disk
orbiting around an object of mass M, the accretion timescale at
a distance r from the central object is

tacc �
r 2

�
; ð19Þ

where � is the kinematic viscosity (Lynden-Bell & Pringle
1974). The standard � -parameter is defined (Shakura & Sun-
yaev 1973) so that

� ¼ �c2s
r d�=drð Þj j

¼ �c2s
3=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r3

p ; ð20Þ

where cs is the sound speed in the disk and � is the disk
angular velocity. Eliminating �,

� � 3

2

GMrð Þ1=2

taccc2s
¼ 3

2

GM

rc2s

1

�tacc
: ð21Þ

We can identify the evacuation radius and time of equation (18)
with the accretion radius and timescale of equation (21).
Doing so, we find that the numerical viscosity as a function of
radius is

� � 78
GM

rc2s

r

�x

� 	�2:85
¼ 78

rB

�x

r

�x

� 	�3:85
; ð22Þ

where rB � GM=c2s is the standard Bondi radius. Note that
the exponent of the relation for � is �2.85 rather than
�4:35 ¼ �1=0:23 because � / r�3=2. To give some feel for
the consequences of this relation, for rB=�x ¼ 10 the nu-
merical viscosity drops to � ¼ 0:01 at r ¼ 18:6�x.

We also computed an effective � using a method introduced
by Artymowicz & Lubow (1994) for SPH simulations. We
simulated an initially thin (two cells wide) ring of material
orbiting around a sink particle of massM�. The temperature in
the ring is 10 K, and the mean molecular mass is 2:33mp. As
the ring orbits, numerical viscosity causes it to widen. Pringle
(1981) has analytically solved the problem of an initially thin
ring of pressureless material spreading due to viscosity as it

orbits around a point mass. He shows that for a ring of initial
mass m, radius R0, and viscosity �, the surface density as a
function of time is given by

� x; 	ð Þ ¼ m

�R2
0

	�1x�1=4 exp � 1þ x2

	


 �
I1=4

2x

	


 �
; ð23Þ

where x ¼ R=R0 and 	 ¼ 12�t=R2
0 are the dimensionless ra-

dius and time and I1=4 is the modified Bessel function of order
1/4. We simulated the evolution of a ring, and at a series of
times during its evolution we fitted the surface density profile
to the form given by equation (23) to obtain a best-fit value for
�, from which we infer a value of � using equation (20). We
repeated this procedure for rings with radii of 20, 40, and 60
cells, for cells 2:1 ; 1013 cm ¼ 1:85 AU across.
Figure 9 shows the value of � that we infer as a function of

time for each of our test runs. This is not constant; instead, it
varies in a curve that is the same for each ring radius. The
variation may be due to the changing numerical viscosity that
different parcels of gas experience as the ring spreads over a
range of radii, it may be a result of the varying resolution
with which we resolve the ring during its spread, or it may
simply be an indication that the behavior of viscosity in our
code is more complex than can be captured with a simple
� -disk approach. It is almost certainly not simply an initial
transient, since over the course of the evolution the peak sur-
face density in the ring has decreased by several e-foldings.
The variation of � with time makes comparison with our
disk evacuation radius method, which yields a single value of
� , problematic. To facilitate comparison, we compute a time-
averaged value of � in the ring test over a period from 0.09 to
0.9 orbital periods, where we have data for each ring radius.
While this period may not be fully representative of the value
of � as it evolves over time, it provides a rough estimate of the
outcome of our ring tests.
Figure 10 compares a time-averaged estimate of � from the

ring test with the values predicted by our disk evacuation

Fig. 9.—Best-fit value of � vs. time for our ring test. The curves marked
with crosses, asterisks, and diamonds are for r=�x ¼ 20, 40, and 60, respec-
tively. The x-axis measures time in units of orbital periods at the initial radius of
the ring.
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method using equation (22). In all three cases that we ran, the
ring tests show substantially smaller values of � , but the slope
of � versus radius appears to be shallower than indicated by
the disk evacuation radius method. We fit the time-averaged
value of � versus radius shown in Figure 10 and find a best fit

� � 1100
r

�x

� 	�2:37
ð24Þ

for rB=�x ¼ 1:36 ; 104. (We chose this very large value of
rB=�x to ensure that the ring was thin in the vertical direction.)
We have not performed tests for other values of rB=�x, so it is
not clear how � scales with rB=�x. For our chosen value of
rB=�x, our estimate of � derived from the radius of the evac-
uated zone is more conservative for values of � > 0:016, which
occur for radii of r=�x<107. For larger radii or lower values
of � , we can use equation (24) as a more conservative limit.

Equations (22) and (24) provide useful resolution require-
ments for hydrodynamics codes involving disks, since one can
only believe the results of a disk simulation in those regions
with resolution high enough that the effective � due to nu-
merical viscosity is much smaller than the � that arises from
whatever sources of physical viscosity are present. The scal-
ings of � with r, rB, and �x that we have found using our two
methods should depend only on geometry and on the physics
of � -disks and so is likely to be about the same in any code
using Cartesian geometry; the constants of proportionality, how-
ever, likely depend on the hydrodynamics algorithm. Hydro-
dynamics codes using different grid geometries, on the other
hand, would likely have very different exponents in equations (22)
and (24). In particular, a disk centered on the origin of a cylindrical
or spherical grid would probably show much less numerical
viscosity.

4. FROM BONDI TO BONDI-HOYLE ACCRETION

4.1. Backgground

While there have been extensive studies of Bondi-Hoyle
accretion for flow with uniform velocities or smooth velocity
gradients (Ruffert 1994a, 1994b, 1995, 1996; Ruffert & Arnett

1994; Ruffert & Anzer 1995; Foglizzo & Ruffert 1997, 1999;
Foglizzo 2002), in many cases accretion occurs in a super-
sonically turbulent medium in which there are numerous shocks
present. An example of accretion in a shock-filled medium
is the star formation process. Observations of star-forming re-
gions show that they are turbulent, with complex morphologies
and velocity structures. Nonthermal line widths within star-
forming regions range from transonic for the length scale of a
core that forms a single star or small multiple system to highly
supersonic on the scale of entire molecular clouds, with a
power-law relation between line width and size in between
(Larson 1981; Ossenkopf & Mac Low 2002). Simulations of
turbulence in star-forming cores show that turbulent motions
are able to reproduce the molecular line emissions, aspect ra-
tios, line width gradients, and line width–size relations (Klein
et al. 2003; Padoan et al. 2003).

It is therefore interesting to consider what happens when a
shock rolls over an accreting object, such as a protostar in a
molecular cloud clump. Initially, the accretion rate and density
and velocity profiles will look like standard Bondi accretion;
after long times, they will be appropriate for Bondi-Hoyle
accretion. We are interested in studying the details of the
transition and the time-dependence of the accretion rate.

4.2. The Simulation

We simulate a Mach 3 shock impacting an accreting particle.
We place a sink particle with a mass of M� in a gas of H and
He with a temperature of 10 K. The Bondi radius is therefore
rB ¼ 0:12 pc. Figures 11 and 12 show the initial configuration
of the problem. We divide the computational domain into two
regions. For x > �4rB, the gas initially has a density and ve-
locity profile given by the analytic solution for Bondi accretion
with �1 ¼ 10�25 g cm�3. This density is unrealistically low
for a real star-forming region; we choose it because we wish to
ensure that the particle does not accrete enough to substantially
change its mass over the course of the simulation. We are
neglecting the self-gravity of the gas, and thus as long as the
sink particle’s mass changes negligibly, the density is not a
relevant parameter of the problem and may be scaled to an
arbitrary value. For x < �4rB, we generate postshock con-
ditions appropriate for an isothermal shock of Mach number
M ¼ 3 moving in the +x-direction into a region with density
�1 that is at rest. Thus, for x < �4rB, we set � ¼ M2�1,
v¼ M� 1=Mð Þcsx̂, where cs is the sound speed.

Fig. 10.—Plot showing � approximated using our disk evacuation method
(upper, unmarked line) and using our ring method (lower line, marked with
crosses).

Fig. 11.—Logarithm of density for the initial configuration of the Bondi to
Bondi-Hoyle accretion problem. The image is a slice through the equatorial
plane. We do not show the accretion region or sink particle because they are
too small to see clearly. The plotted density range has been truncated at the top
to bring out lower density features. The small irregularity visible in the shock
front is a result of varying resolution: the shock is wider farther from the x-axis
because it is spread over �3 cells and the cells are larger farther from the axis.
The Bondi radius is rB ¼ 0:12 pc; �1 ¼ 10�25 g cm�3. [See the electronic
edition of the Journal for a color version of this figure.]
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The domain of the computation goes from �4rB to 4rB
in the y- and z-directions, and from �6rB to 10rB in the
x-direction. The boundary conditions are inflow/outflow in ev-
ery direction. We choose refinement criteria to guarantee that the
region around the sink particle is always resolved such that at a
distance r from the sink particle, r=�x� 32. This continues to a
maximum resolution of �x ¼ rB=512 ¼ 50 AU. Note that for
M ¼ 3, rB ¼ 10rBH, so the maximum resolution is 51 cells per
Bondi-Hoyle radius.

Before the shock reaches the sink particle, the flow is pure
Bondi accretion; for the parameters we use in the simulation,
the accretion rate should be ṀB ¼ 5:9 ; 10�11 M� yr�1. Long
after the shock passes the particle, the flow should be Bondi-
Hoyle accretion with M ¼ 3 and a background density of
M2�1 ¼ 9 ; 10�25 g cm�3. Based on our results from x 3.3
and those of Ruffert (1996), the mean accretion rate should
then be ṀBH ¼ 1:8 ; 10�11 M� yr�1.

4.3. Results

Figure 13 shows a series of snapshots of the simulation. As
one might expect, the configuration does not change much
until the shock approaches within a distance �rB of the par-
ticle. At that point, the shock starts to bow, with the part along
the axis the farthest forward as it propagates into infalling gas.
Figure 13a shows this effect. Figure 13b shows that as the
shock passes the particle, a dense cylinder of shocked material
accumulates where flows of gas swept up in the shock con-
verge and shock again. This is the beginning of the con-
verging streamlines and Mach cone that are characteristic of
Bondi-Hoyle accretion. In Figure 13c the dense cylinder is
showing the first signs of the destruction of axial symmetry.
In Figure 13d the asymmetry is increasing. By Figure 13e,
within one Bondi-Hoyle radius of the sink particle there is a
well-developed Mach cone, which is becoming turbulent in its
interior. In Figure 13f the Mach cone extends the full length of
the range that we plot and appears to be fully turbulent in its
interior. However, in Figure 13f the density of material in the
Mach cone is still inflated due to the presence of material that
was part of the Bondi flow and has been swept up by the
shock. The densities in the cone undergo a slow decline until
reaching a steady state; however, the morphology of the cone
does not change further.

Figure 14 shows the accretion rate as a function of time. As
the plot shows, the accretion rate is initially flat and in good
agreement with the predicted value for Bondi accretion. When

Fig. 13.—Series of slices through the equatorial plane. The density range has
been truncated to bring out detail. The asterisks indicate the position of the sink
particle; we do not show the accretion region because it is too small to see
clearly. We have truncated the density range at the top and the bottom to bring
out details. Note that in contrast with Figs. 11 and 12, the length unit of these
plots is rBH ¼ 0:012 pc ¼ rB=10. The times shown in each panel are as follows:
(a) �0:25tBH, (b) 1:6tBH, (c) 1:9tBH, (d ) 2:7tBH, (e) 4:3tBH, and ( f ) 5:9tBH,
where tBH ¼ 6:35 ; 104 yr. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 14.—Solid curve: Accretion rate onto the sink particle vs. time, sampled
at intervals of tBH=10. Short-dashed horizontal lines: Predicted Bondi (upper
line) and Bondi-Hoyle (lower line) accretion rates. Long-dashed line: Expo-
nential fit to the accretion rate after the shock hits the sink particle. Time is
plotted in units of tBH ¼ 6:35 ; 104 yr, and accretion rate is plotted in units of
ṀB ¼ 5:9 ; 10�11 M� yr�1.

Fig. 12.—(a, b) Density and x-velocity, respectively, along the x-axis in the
initial configuration of our Bondi to Bondi-Hoyle accretion problem. The
Bondi radius, sound speed, and background density are rB ¼ 0:12 pc, cs ¼
0:19 km s�1, and �1 ¼ 10�25 g cm�3.
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the shock hits the sink particle at t ¼ 0, the accretion rate
immediately increases by �50% as the particle starts accreting
high-density shocked material. The accretion rate then begins
to fall off until it approaches its equilibrium value. After some
experimentation, we found that the overall shape curve is
reasonably well-fitted by an exponential of the form

Ṁ ¼ ṀBH þ Ṁ0 � ṀBH

� �
exp � t

ttrans


 �
; ð25Þ

where Ṁ0 is the accretion rate immediately after the shock hits
the sink particle and ttrans is the characteristic timescale for the
accretion rate to transition from Bondi to Bondi-Hoyle. Our
best-fit values for this case are Ṁ0 ¼ 7:7 ; 10�11 M� yr�1 ¼
1:3ṀB ¼ 4:3ṀBH and ttrans ¼ 1:1 ; 106 yr ¼ 1:7tB ¼ 17tBH,
where tB ¼ rB=cs ¼ 6:35 ; 105 yr and tBH ¼ rBH=cs ¼ 6:35 ;
104 yr.

The characteristic timescale for the transition is closer to the
Bondi time than the Bondi-Hoyle time. This is not surprising in
retrospect. Before the shock hits, gas out to a distance �rB
from the sink particle is inflowing supersonically. In a Bondi-
Hoyle flow, gas at distances �rB 3 rBH does not develop
supersonic inflow velocities because it does not spend enough
time near the sink particle. However, even after it is shocked,
the gas that was originally part of the Bondi flow retains its
supersonic infall speed and is therefore likely to find its way
down to the sink particle. Since the gas is coming from a
distance of order rB, its characteristic timescale to reach the
sink particle is of order tB. Once all the leftover gas that was
part of the Bondi flow out to�rB has drained onto the accreting
particle, the accretion rate drops down to what one would
expect for pure Bondi-Hoyle flow. As a result of this effect, the
particle accretes an additional amount of mass

�M �
Z

Ṁ � ṀBH

� �
dt� Ṁ0 � ṀBH

� �
ttrans � 56ṀBHtBH

ð26Þ

beyond what it would have accreted if the accretion rate had
instantly shifted from Bondi to Bondi-Hoyle.

5. SUMMARY

We have demonstrated a new method for including moving,
Lagrangian sink particles in a Eulerian hydrodynamics code.
Our method shows excellent agreement with analytic results
for a number of test problems, even in regimes where our for-
mula for the accretion rate is at best a guess. In the process of
testing the behavior of our sink particle in the presence of ro-
tating flows, we develop a method to parameterize the effects of
numerical viscosity in disk simulations and use it to compute �
for our Cartesian AMR code. This method provides a resolution
requirement for future disk simulations.

We have also solved a simple example problem using our
sink particle method and shown that it produces useful results
in that case. We have discovered one limit of our method: sink
particles can produce significant errors in the accretion rate
when the flow is transitioning from subsonic to supersonic at
the accretion radius. It is not clear if SPH sink particles also
encounter difficulty in this regime; we have not found any tests
in the literature that address the point. Regardless, with AMR
one can easily avoid the regime where rB � racc, since one can
simply increase the resolution temporarily until the sink par-
ticle accretes enough mass that rB > racc.

The new technique will extend the range of Eulerian simu-
lations, allowing them to run for longer times on problems
gravitational collapse. Thus, it extends to Eulerian codes one of
the heretofore unique advantages of SPH while retaining the
accurate treatment of shocks and radiative transfer capability
that are found in Eulerian approaches.
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