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ABSTRACT
The common envelope interaction is thought to be the gateway to all evolved compact binaries
and mergers. Hydrodynamic simulations of the common envelope interaction between giant
stars and their companions are restricted to the dynamical, fast, in-spiral phase. They find that
the giant envelope is lifted during this phase, but remains mostly bound to the system. At the
same time, the orbital separation is greatly reduced, but in most simulations it levels off at
values larger than measured from observations. We conjectured that during the post-in-spiral
phase the bound envelope gas will return to the system. Using hydrodynamic simulations,
we generate initial conditions for our simulation that result in a fall-back disc with total
mass and angular momentum in line with quantities from the simulations of Passy et al. We
find that the simulated fall-back event reduces the orbital separation efficiently, but fails to
unbind the gas before the separation levels off once again. We also find that more massive
fall-back discs reduce the orbital separation more efficiently, but the efficiency of unbinding
remains invariably very low. From these results we deduce that unless a further energy source
contributes to unbinding the envelope (such as was recently tested by Nandez et al.), all
common envelope interactions would result in mergers. On the other hand, additional energy
sources are unlikely to help, on their own, to reduce the orbital separation. We conclude by
discussing our dynamical fall-back event in the context of a thermally regulated post-common
envelope phase.
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1 IN T RO D U C T I O N

The common envelope binary interaction was proposed by
Paczynski (1976) to explain the existence of cataclysmic variables
and evolved, close binary star systems. A common envelope event
is supposed to occur when a binary system with a sufficiently small
mass ratio (Maccretor/Mdonor) comes into contact, usually as the result
of one star expanding as it evolves into a giant. If mass transferred
from the expanding star cannot be accommodated by the compan-
ion, then the companion would quickly enter a common envelope,
in-spiral towards the core of the primary and cause the removal of
the envelope via the transfer of orbital energy and angular momen-
tum to the gas. The result would be a close binary composed of
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the core of the giant and the companion, or, if the envelope is not
removed, a merger (for a review see Ivanova et al. 2013).

The common envelope interaction has been investigated via three-
dimensional hydrodynamic simulations using both smooth particle
hydrodynamics (SPH) and Eulerian grid codes, and all have found
that by the time the fast in-spiral slows down, the envelope is lifted
but not completely unbound. Rasio & Livio (1996), using an SPH
code, found that approximately 90 per cent of the envelope of their
4 M� red giant branch (RGB) star remains bound. Sandquist et al.
(1998), using a stationary nested grid method with intermediate
mass giants found that approximately 60 per cent of the envelope
was still bound to the system. Ricker & Taam (2008) and Ricker &
Taam (2012) improved on this simulation by using an adaptive mesh
refinement grid code. With this method they found that 75 per cent
of the envelope of a 1 M�, early RGB star remained bound to the
system. Passy et al. (2012), comparing single grid and SPH simu-
lations concluded that approximately 85 per cent of the envelope
of 1 M�, late RGB star remains bound to the system. In all these
simulations most of the envelope is lifted away from the orbiting
cores, to approximately 1000 R� in the case of the SPH simulations
of Passy et al. (2012), but remains mostly bound to them.
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A number of other mechanisms have been proposed to assist in
the removal of the bound gas. Passy et al. (2012) estimated that
radiation pressure alone would be unlikely to remove the remain-
ing bound mass. A more promising mechanism, is that expanding
gas cools and recombines and that recombination energy may con-
tribute to unbinding the bound gas (Han, Podsiadlowski & Eggleton
1995; Ivanova, Justham & Podsiadlowski 2015). Nandez, Ivanova &
Lombardi (2015) included the recombination energy via the equa-
tion of state. They simulated a common envelope interaction be-
tween compact (R ∼ 16–30 R�), low mass (M = 1–1.8 M�) RGB
primaries and a 0.36 M�, compact companion with an SPH code.
These simulations completely removed the envelope, while using
an ideal gas equation of state removed only 50 per cent of the en-
velope. On the other hand, Ohlmann et al. (2016) simulated a more
extended giant with the moving-mesh code AREPO (Springel 2010)
and preliminary results (Ohlmann, private communication) show
that adding recombination energy to those simulations doubles the
unbound mass, but the total unbound mass is still only less than a
quarter of the total.

Some hydrodynamic simulations also tend to produce final orbital
separations larger by a factor of a few than observed in post-common
envelope binaries (Passy et al. 2012).1 More importantly, simulated
systems with larger companion to primary mass ratios result in
systematically larger separations, a trend also not observed. This
said, simulations with heavier and/or more compact envelopes do
reproduce observed separations (Rasio & Livio 1996; Nandez et al.
2015). The short orbital separation achieved by Nandez et al. (2015)
is likely disconnected from the implementation of the recombination
energy formalism and is due instead to the compact nature of the
primary. The SPH simulations of Rasio & Livio (1996), that did not
include the effects of recombination energy, also achieved a very
small orbital separation (1 R�), possibly because of their relatively
compact (62 R�) and more massive (4 M�) RGB primary.

It has also been suggested that the bound gas from the interaction
returns to the binary, and interacts with the core of the giant and
the companion again. Kashi & Soker (2011) calculated analytical
scenarios where 1–10 per cent of a common envelope would return,
making, in their case, a 0.2 M� stable disc around the binary, which
would then interact tidally with it, thereby shortening the orbital
separation. Such discs would not interact directly with the binary.
Examples of circumbinary discs around post-common envelope bi-
naries include those detected around post-RGB and post-AGB star
binaries by, e.g. van Winckel et al. (2009), or those around suspected
central stars of planetary nebula binary mergers (De Marco & Soker
2002; De Marco, Barlow & Cohen 2002).

In this paper we consider instead what might happen if a sub-
stantial fraction of the envelope remained bound and fell back on
to the binary in the form of a disc or torus. Although some of
the gas would possess sufficient angular momentum to form a cir-
cumbinary disc, some would likely crash on to the central binary,
as was estimated analytically by Tocknell, Marco & Wardle (2014).
A new interaction phase may provide the opportunity to further
reduce the orbital separation, thereby transferring more energy and

1 Observed post common envelope binaries tend to have separations of
�4 R� (Schreiber & Gaensicke 2003; Zorotovic et al. 2010; De Marco
et al. 2011), apparently independently of the companion to primary mass
ratio. These small orbital separations are not an effect of orbital decay at the
hand of physical mechanisms that take place after the common envelope.
The observed systems are either central stars of planetary nebula, which
have only just left the asymptotic giant branch, or young white dwarves, for
which not enough time has elapsed for further orbital shrinkage.

angular momentum to the gas, which could, as a result, become
unbound.

Here we simulate such a fall-back event, using a grid-based hy-
drodynamics approach, guided by the binary separation, the bound
mass and angular momentum values at the end of the simulations of
Passy et al. (2012). Our a setup is completely artificial at time zero.
It is purely designed to result in an in-falling disc with the correct
parameters shortly after the start of the simulation. We use these
simulations as the basis of a discussion of the possible role played
by gas falling back on to the binary.

In Section 2 we describe the simulation setup. In Section 3
we discuss our results: the orbital separation decrease achieved
(Section 3.1), the amount of unbound gas (Section 3.2), the conser-
vation of energy and angular momentum in our simulations (Sec-
tion 3.3), the impact of the gas temperature on the outcome (Sec-
tion 3.4) and the effects of numerical resolution (Section 3.5). In
Section 4, guided by our simulations, we discuss the likely effects
of fall-back discs on orbital separation and gas unbinding. We sum-
marize and conclude in Section 5.

2 T H E S I M U L AT I O N S E T U P

The simulations are carried out with the grid-based hydrodynamic
code ENZO, adapted to simulate the common envelope interaction by
Passy et al. (2012). This code includes gravity and hydrodynamics
calculated using a ZEUS solver. We use an ideal gas equation of
state (γ = 5/3) in a Cartesian grid with 2563 cells, corresponding
to 143 R� in each direction. A smoothing length of 1.5 cells is
implemented (Passy et al. 2012). In the simulations carried out by
Passy et al. (2012), a 1 M� main-sequence star was evolved to the
RGB using the stellar evolution code EVOL (Herwig 2000). This
produced an RGB star with a radius of 83 R�, a total mass of
0.88 M�, and a core mass of 0.39 M�. The common envelope
interaction with a 0.6 M� companion resulted in a final separation
of 20 R�. Approximately 0.44 M� of the RGB star’s envelope
remained bound to the system. These final conditions are used here
to construct our simulation of a fall-back event.

Our simulations begin with two point mass particles of mass
0.39 M� and 0.6 M� representing the core of the RGB star and the
companion, with an initial separation of 20 R�. Ideally we would
like to follow the simulation of Passy et al. (2012) further in time,
and wait for the fall-back event to happen naturally. However, this
would be computationally expensive and would require a consider-
ably larger computational domain. While this is not strictly beyond
the realm of possibility, we start with a much simpler model setup
from which future simulation can gain insight.

What we know from Passy et al. (2012) is that 0.44 M� of gas
will fall back on to the central binary and that the total angular
momentum of the bound material is 1.5 × 1052 g cm2 s−1 and is
directed in the z-direction, perpendicular to the orbital plane.

To encourage the gas to fall on to the central system as a disc and
to ensure that the in-falling gas has the appropriate amount of mass
and angular momentum, we start with a constant density of 10−6 g
cm−3. This value is chosen because in this way the total gas mass
on the grid at the beginning of the simulation (0.49 M�) is similar
to the mass of the bound material in the simulation of Passy et al.
(2012, 0.44 M�), which we expect to fall back. A bonus is that
this is also similar to the density in which the core and companion
are immersed at the end of the simulation by Passy et al. (2012;
0.5 × 10−6 g cm−3).

The gas on the equatorial plane (z = 0) is given an orbital velocity
around the binary corresponding to 0.75 times the Keplerian value.
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Figure 1. A temperature slice along the orbital plane, from the simulation
of Passy et al. (2012) for the ENZO7 simulation with a 0.6 M� companion.
This slice is from the end of the simulation after 1000 d. The box indicates
the size of the computational domain used in the simulations of this paper.

Gas situated above and below the equatorial plane (z values larger
or smaller than zero) was given the same velocity as the gas with
the same x and y coordinates. This setup is equivalent to a set
of concentric, solidly rotating cylinders. In this way the gas on
or close to the orbital plane, which has sub-Keplerian velocities
falls on to the particles, while gas farther away from the plane has
super-Keplerian velocities and is evacuated. This is an expedient to
generate a fall-back disc. Already by 0.02 yr into the simulation,
the gas has redistributed itself into a disc.

One issue that cannot be resolved presently is that of the temper-
ature of the fall-back disc. Since this issue does play a role on the
type of disc that forms, or even if a disc would form at all, we dwell
on it below.

2.1 The disc’s temperature

The temperature of the fall-back disc is unknown. The temperature
at the end of the simulation of Passy et al. (2012) is shown in Fig. 1.
The volume weighted average temperature in the entire simulation
box is 25 000 K, while in the smaller box with the size of our
simulation domain it is ∼100 000 K. The mass-weighted average
over our small simulation domain is ∼120 000 K, similar to the
volume-weighted average, due to a relatively homogeneous mass
density over the small central volume. Close to the particles the
temperature is closer to 1 million degrees Kelvin, and possibly it
would be higher if nuclear energy generation had been allowed
to contribute. By the end of their simulation, the computational
volume only samples low amounts of left over, out-streaming gas
(0.04 M�). Most of their envelope mass is, at that time, outside the
simulation domain.

The end of the simulation of Passy et al. (2012) cannot therefore
be used directly to constrain the temperature of in-falling gas. Al-
though we have conjectured that the gas will fall back organized in
a disc, we admit to the fact that, depending on the temperature be-
haviour of the in-flowing gas the structure that forms may become
pressure supported before it becomes rotationally supported. If this
were so an actual disc may not form in the way we have envis-

aged. Here we nonetheless experiment with the idea that a disc does
indeed form, but we admit to this caveat and leave this question
ultimately unanswered, suggesting that it requires a full simula-
tion of the post-dynamic in-fall phase, such as those attempted by
Reichardt (2016).

The gas would adiabatically cool as it expands and heat as it
falls back. Some radiative cooling could also take place during the
expanded phases, resulting in lower temperatures of the fall-back
material. It is likely that the temperatures would be quite high, close
to what they were in the inner regions of the star.

We also should point out that the temperature which we give the
gas at t = 0 is not the temperature of the fall-back disc. Pre-empting
our results (Section 3), the value of the temperature changes very
quickly as the disc falls into place and the interaction between the
in-falling gas and the particles injects energy. Ultimately no matter
what the temperature at the start of the simulation, it converges
towards a volme-averaged virial value of ∼50 000 K at about 0.3 yr
after the start of the simulation (Kuruwita 2015). What does change
for different initial values of the temperature is, on the other hand,
the mass of the forming disc: the higher the temperature the lower
the mass is for the same velocity profile. This may argue that a
higher temperature value would result in more pressure support
and a fall-back event that looks less like a disc and more like an
envelope.

Under the assumption that a disc-like structure does form, and
that the mass and angular momentum of this structure should be as
those dictated by the simulation of Passy et al. (2012), we carry out
three simulations, with two initial temperature values: one Cool sim-
ulation and two Hot simulations. Our Cool simulation begins with a
uniform temperature profile of 350 K, while the initial temperature
of the Hot simulations is 35 000 K. The second Hot simulation has a
slower velocity profile and is designed to maintain the same amount
of disc mass as the Cool simulation but with a higher temperature.
We discuss temperature further in Section 3.4.

3 R ESULTS

Fig. 2 shows the first 0.1 yr of the fall-back event. In the top right
panel of this figure we show a contour that indicates the locus where
the gas velocity is equal to the Keplerian value. The Keplerian ve-
locity is calculated using vKep = √−φ, where φ is the gravitational
potential from the core and companion at a given point in the grid.
Above and below the core and companion, within the cones outlined
by these contours, the gas is super-Keplerian, while outside the cone
it is sub-Keplerian, so the gas within the cones is rapidly evacuated,
while the initially sub-Keplerian gas falls on to the orbital plane
and towards the particles. The pocket of gas between the particles
extending just above and below them is also sub-Keplerian. The
arrows indicate the component of the velocity projected on to the
plane of the slice. In the top-right panel of Fig. 2 the velocity arrows
should be zero, but they are not due to the fact that the centre of the
grid is along cell boundaries and not cell centres, so we are plotting
a slice which is half cell in front of the y = 0 value. By 0.03 yr the
density along the orbital plane is approximately 4 orders of magni-
tude higher than above and below the plane, so we can confidently
say we have created a disc.

In Fig. 2 an ‘edge effect’ is evident at 0.02 yr, particularly on the
left column, as low density pockets develop at the computational
domain boundary as gas should be drawn from outside of the com-
putational domain due to the velocity field imposed, but the outflow
boundary conditions do not allow this to happen. This low density,
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Fall-back discs in common envelope binary interactions 489

Figure 2. Density slices along the orbital plane (left-hand panels) and
perpendicular to orbital plane (right-hand panels), at the beginning of the
simulation (top row), and then at 0.02, 0.04, 0.06, 0.08 and 0.10 yr (following
rows). The contour lines in the top-right panel are discussed in the text.

Figure 3. Total gas mass within three regions in the grid. The middle panel
shows the mass centred on the orbital plane (i.e. 0.35 ≤ z ≤ 0.65, where 1.0
is the dimension of the grid). Top and bottom panels show the mass above
and below the central region. The vertical lines are time reference points
and are described in Section 2.1.

low temperature, low pressure pockets rapidly equalise and do not
have a dynamical effect on the simulation.

We estimate the mass of the fall-back disc (Fig. 3) by dividing
our grid into 3 sections. The middle section is defined by a box that
spans 30 per cent of the z-axis and is centred on the orbital plane.
The regions above and below contain the remaining computational
domain. By creating a mass time series for each of the three regions
we can estimate that the fall-back disc contains ∼0.38 M�, as this is
the total mass in the central region shortly after the initial evacuation
of gas from the grid at 0.04 yr. This value is reasonably close to
the 0.44 M� of bound mass found by Passy et al. (2012), which is
expected to fall back.

Throughout this paper, time series figures, such as Fig. 3, have 10
vertical reference lines. The blue dashed line indicates what we call
the ‘unbinding event’ in Section 3.2 and corresponds to a time of
0.06 yr. The black solid lines indicate three major mass-loss events
over the course of the simulation. These correspond to times 0.01,
0.04 and 0.1 yr. The red dotted lines each indicate times of 0.02,
0.03, 0.05, 0.07, 0.08 and 0.09 yr. These reference lines allow easy
comparison between figures.

Passy et al. (2012) calculated that the total z-component of the
angular momentum of the bound gas and of the particles at the end
of their simulation was 1.5 × 1052 g cm2 s−1 and 0.6 × 1052 g
cm2 s −1, respectively (see figs 8 and 9 of Passy et al. 2012). In our
simulations, the total angular momentum of the gas and particles
after the mass-loss of the initially super-Keplerian gas at t ∼ 0.04 yr
is ∼1.3 × 1052 g cm2 s −1 and ∼0.7 × 1052 g cm2 s −1, respectively
(see Fig. 4), justifying our choice of initial velocities.

In what follows we describe the Cool simulations, carried out with
the initial temperature value of 350 K. In Section 3.4 we compare
this simulation with the two simulations carried out with a hotter
initial temperature.

3.1 The orbital separation

The Cool simulation resulted in the decrease of the orbital separation
by 35–43 per cent as shown in Fig. 5. This value range was calculated
using the initial orbital separation of 20 R�, or using the maximum
separation observed after the initial widening of the orbit (24.5 R�).
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Figure 4. The evolution of the angular momentum components throughout
the simulation. The solid black line is the total angular momentum of the
system. The green dashed line is the angular momentum of the gas and the
red dotted line is the angular momentum of the particles. The dot–dashed
black line is the total angular momentum, corrected for mass-losses from
the computational domain. The vertical lines are time reference points and
are described in Section 2.1.

Figure 5. The separation of core and companion as a function of simulation
time for the Cool interaction. The vertical lines are time reference points
and are described in Section 2.1.

This initial increase in separation occurs over 0.08 yr, or a couple of
orbital periods (Fig. 6). It is in small part due the system developing
an eccentricity of about 0.15 over the same time period but, more
importantly, it is due to the fact that the gas speed at the location
of the particles is initially faster than the particle’s orbital velocity,
thus exerting a temporary drag in the direction of motion (the gas
is transferring orbital energy to the particles). We will discuss this
effect further in Section 3.4.

3.2 Determination of the amount of unbound gas

We calculate the amount of unbound gas by summing the potential,
kinetic and thermal energies. This method gives an upper limit to
the amount of unbound gas because the thermal energy may be
converted into kinetic energy due to expansion, but it may also be

Figure 6. Top panel: the time to orbital apastron at each data output is shown
in the top panel for the Cool simulation. Middle panel: the orbital period of
the binary. Bottom panel: the eccentricity of the system. The vertical lines
are time reference points and are described in Section 2.1.

Figure 7. (i) Total mass in the computational domain; (ii) cumulative mass
leaving the domain; (iii) total mass inside and outside the computational
domain; (iv) mass lost from the computational domain per data output for
the Cool simulation. In all panels, the black line shows total mass, while
the dashed red and dash–dotted green lines indicate the bound and unbound
mass, respectively. The unbinding event (blue dashed vertical line) is defined
as the peak unbound mass within the domain in panels (i) and (iii), while the
three major mass-loss events, seen as three peaks in panel (iv) are marked
by black vertical lines.

lost radiatively. The bound and unbound gas in the grid is shown
in Fig. 7. In each panel the red and green lines indicate the bound
and unbound mass, respectively, while the black line indicates the
sum of the two. In Fig. 7 (i) we see a peak in unbound mass in
the grid at 0.06 yr due to the core and companion imparting energy
to the gas. We call this peak the ‘unbinding event’ and mark it by
a blue vertical dashed line in the figures. In Fig. 7 (ii) we show
the amount of bound and unbound gas leaving the computational
domain. This was estimated by multiplying the fraction of unbound
mass within the boundary layer by the mass lost between code
outputs. The boundary layer is defined as the 6, one-cell thick faces
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Fall-back discs in common envelope binary interactions 491

Figure 8. Total energies within the box for the Cool simulation. Plotted
are the total energy (solid black line), total energy corrected for mass-loss
from the box (dashed black line), thermal energy (blue line), kinetic energy
of the particles (dotted green line), kinetic energy of the gas (dashed green
line), the total kinetic energy (solid green line), the potential energy of the
particles with respect to each other (dotted red line), the potential energy of
gas on itself (dashed red line), the potential of the particles with respect to
the gas (dash–dotted red line) and total potential energy (solid red line). The
vertical lines are time reference points and are described in Section 2.1.

at the edge of the computational domain. We implicitly assumed
that the unbound mass remained constant between outputs and that
the fraction of unbound gas in the boundary layer was representative
of the gas within a few cells of the boundary. From these plots we
see that the unbound mass from the unbinding event appears to
leave the grid 0.01–0.02 yr later. Summing together the unbound
gas fraction within the box and the unbound mass that has left the
box (see Fig. 7 (iii)) we see that the unbound gas fraction levels off
at around 4 per cent of the total mass of the gas. This translates into
5 per cent of the fall-back disc mass becoming unbound. The dips
in the total unbound mass in the system as seen in Fig. 7 (iii) signify
that unbound mass becomes bound. This is due to gas becoming
unbound by interacting with the particles, but later losing energy
before leaving the grid either by slowing down because of colliding
with bound gas or by adiabatic cooling (we remind that we include
the gas’ thermal energy in calculating whether mass is unbound).
The mass-loss per data output is shown in Fig. 7 (iv).

3.3 Energy and angular momentum conservation

Since mass flows out of the grid, energy and angular momentum are
not conserved. However we have devised an approximate method to
check whether the code is conserving energy. The increase in total
energy by 8.5 × 1045 erg or 21 per cent of the initial total energy
of −4 × 1047 (Fig. 8) is due to the loss of bound gas from the
grid (which negative energy). We estimated the energy lost from the
computational domain through the two computational domain faces
parallel (Eloss,para) and the four faces perpendicular (Eloss,perp) to the
orbital plane, by calculating the average specific total energy within
those faces. We then found the fraction of mass in the boundary
layer within the faces parallel, fpara, and perpendicular, fperp, to the
orbital plane (fpara + fperp = 1). Assuming these mass and energy
fractions remained relatively constant over the time between data

Figure 9. Energy loss per data output for the Cool simulation (top panel) as
estimated using equations(1) and (2). The vertical lines are time reference
points and are described in Section 2.1. The blue dotted line indicates energy
loss through the four computational domain faces perpendicular to the orbital
plane and the red dashed line indicates energy loss through the two faces
parallel to the orbital plane. The black solid line indicates the total energy
lost per data output. In the bottom panel the cumulative energy loss from
the computational domain is shown.

outputs, the energy lost through faces parallel and perpendicular to
the orbital plane was estimated in the following way:

Eloss,para = Espec,para × fpara × Mloss (1)

Eloss,perp = Espec,perp × fperp × Mloss, (2)

where Mloss is the mass lost between data outputs. This gives the
energy loss at the time of each data output to be that shown in Fig. 9,
upper panel. From this we see that most of the energy leaves the
system perpendicular to the orbital plane. Adding the energy lost
calculated with this method to the energy within the box, brings
the total energy to a fairly constant value (the black dashed line in
Fig. 8), with a maximum excursion of ∼6 per cent from the initial
total energy.

Next we considered the conservation of angular momentum (L),
which was calculated using:

L = r × p (3)

where r is the vector location of the centre of each cell with respect
to the centre of mass of the system and p is the linear momentum of
the gas contained in that cell. Fig. 4 shows that the z-component of
the total angular momentum (which is by far the dominating com-
ponent due to the geometry of the system) declines as gas leaves the
computational domain. We accounted for the lost angular momen-
tum in the same manner as we did for the energy. The dotted black
line in Fig. 4 shows that the angular momentum, once accounted
for losses from the grid, is conserved at the 8 per cent level, where
the error bar on this conservation estimate is relatively large due to
the approximate calculation of the energy and angular momentum
content of the departed gas. The angular momentum of the particles
suffers a temporary increase corresponding to the orbital separation
increase experienced early in the simulation (Fig. 5). Overall the
particles lose approximately 20 per cent of their angular momentum.
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492 R. L. Kuruwita, J. Staff and O. De Marco

Figure 10. The temperature evolution for a slice along the orbital plane (first and third columns) and perpendicular to the orbital plane (second and last
columns), at the beginning of the simulation (top row), at 0.01 yr (second row), at 0.02 yr (third row), 0.03 yr (last row). First two columns: the Cool simulation;
Last two columns: the Hot_tuned simulation.

3.4 Impact of gas temperature on the particles’ in-spiral

As we have explained in Section 2.1 we do not know what the
temperature of the returning gas is, but it likely would play a role
on the dynamics of the returning envelope. We also wonder what
effect the temperature of the gas in the immediate vicinity of the
in-spiralling particles has on the gravitational drag force. The drag
force is related to the density and velocity contrast of the gas bathing
the particles, but also on the Mach number of the particles which is
a function of temperature (Ostriker 1999).

Our Cool simulation started with a gas temperature of 350 K.
Using this initial temperature at t = 0, the initial orbital veloci-
ties of the particles are highly supersonic. We calculated the Mach
numbers of the particles using the average sound speed of the gas
within a 1 R� sphere around the particles. However, suspecting

that some gas becomes trapped in the potential well of the particles,
effectively travelling with them thus lowering the relative veloci-
ties, we also calculated the sound speed of the gas using a box of 33

cells, centred on the cell located two cells in front of the one con-
taining the particle. In practice these two methods returned similar
answers. The particles’ velocities were corrected to be relative to
the average velocity of the gas used to calculate the sound speed.
The initial Mach numbers of the 0.39 M� core and of the 0.6 M�
companion were M = 79 and M = 43, respectively, dropping to
below unity at 0.01 yr of the simulation and maintaining values
of ∼0.2 thereafter. The strong shock heating quickly results in a
temperature profile with values between ∼104 and ∼106 K, only
0.01–0.02 yr after the start of the simulation, when the particles
are just starting to interact with the increased density of the newly
formed disc (Fig. 10).
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Fall-back discs in common envelope binary interactions 493

Figure 11. Evolution of the orbital separation for simulations with different
initial conditions as described in the text. The dot–dashed blue line is for the
Cool simulation (this is the same as in Fig. 5), the dashed red line is for the
Hot_fast simulation and the solid black line is for the Hot_tuned simulation.

We ran two additional simulations with a higher initial tempera-
ture of 35 000 K and the same initial density of 10−6 g cm−3. With
this temperature the Mach numbers of the core and companion at the
beginning of the hot simulations were lower: 5 and 10, respectively,
dropping to 0.5 at time 0.01 yr and remaining around this value
thereafter. The behaviour of the Mach number in the two simula-
tions is therefore similar, transitioning to subsonic before 0.01 yr
of simulation, releasing the suspicion that this may influence the
in-spiral (Ostriker 1999) and leaving other factors such as density
and velocity contrast to be investigated.

For the first of the two ‘hot’ simulations with an initial temper-
ature of 35 000 K, which we nickname Hot_fast, we retained the
same initial velocity setup (see Section 2.). However, maintaining
the same velocity distribution with higher temperature results in less
fall-back mass (0.28 M� versus 0.38 M� for the Cool simulation).
Therefore, we also ran a second high temperature simulation, but
with a slower velocity profile, where gas velocities on the particles’
orbital plane were given 0.4 × vKep instead of a value of 0.75 × vKep.
We nicknamed this simulation Hot_tuned. In this way we tuned the
simulation to generate a fall-back disc mass (0.34 M�) that was
closer to that in the Cool simulation (0.38 M�).

The unbinding efficiencies of the simulations are measured as
described in Section 3.2. The amount of unbound gas in Hot_fast
and Hot_tuned is 5 per cent and 4 per cent, respectively, virtually
the same as for the Cool simulation.

We next compare the separation evolution of our three simula-
tions (Fig. 11). In the Cool simulation the particles in-spiral more
than in the Hot_fast simulation, but less than the Hot_tuned sim-
ulation. We ascribe the difference in in-spiralling behaviour be-
tween the Cool and Hot_fast simulation to the different disc masses
(0.38 and 0.28 M�, respectively) rather than to the different initial
temperatures, where the lighter disc promotes less in-spiral. This
conclusion is drawn based on the fact that looking at simulations
Cool and Hot_tuned, which have closer disc masse values (0.38 and
0.34 M�), but different initial temperatures (350 and 35 000 K)
the total amount of in-spiral is similar. The only difference in the
in-spiral history of these two simulations is the initial orbital ex-
pansion. The Hot_tuned simulation results in less initial expansion
due to the fact that the initially slower gas does not accelerate the

particles. We conclude that the initial temperature is not a major
factor in deciding the rate of in-spiral in the fall-back event for the
cases studied. This is likely due to the fact that the temperature pro-
files converge to similar values soon after the start of the simulation
(Fig. 10).

Kuruwita (2015) tested a range of additional temperatures, up
to 175 000 K. With such a high temperature the pressure is such
that much of the material is evacuated from the simulation domain
early in the simulation and the mass of the fall-back discs is much
reduced (0.2 M�), necessitating an even greater alteration of the
velocity profile in order to achieve the same disc mass as the other
simulations. Changing the isothermal temperature value at t = 0,
while adjusting the velocity profile to obtain the right fall-back disc
mass does not have a direct consequence on the in-spiral pattern
and lack of substantial unbinding. However, these tests act as a
reminder that the temperature profile would play a role in a real
in-fall because it has a direct effect on the pressure.

3.5 Numerical resolution

A resolution of 2563 was deemed by the convergence tests of Passy
et al. (2012) to be sufficient for the common envelope they simu-
lated. In their simulation one cell corresponded to 1.7 R�. With
a smoothing length of 1.5 cells, their final separation of ∼20 R�,
was 8 times the linear resolution multiplied by the smoothing length.
Our cell size is three times smaller than in Passy et al. (2012), or
0.57 R� and the final separation of the Cool simulation is therefore
16 times the linear resolution multiplied by the smoothing length of
1.5 cells. This releases the suspicion that the resolution limits the
in-spiral.

We also carried out an additional resolution test by repeating the
Hot_fast simulation with a higher resolution of 3843. The behaviour
of the orbital separation is almost identical to that observed in
Fig. 11 (red dashed line) for the lower resolution case: we observe a
slightly lesser initial out-spiral of the orbit for the higher resolution
simulation, reaching 20.8 R� instead 21.3 R� and a slightly smaller
final separation of 15.8 R� instead of 16.0 R�. The unbinding
efficiency is not significantly affected by the resolution, with the
high resolution simulations unbinding 5 per cent of the fall-back
material. This test (though not a proper convergence test) gives
some assurance that resolution does not greatly affect the outputs
of our simulation. We discuss this topic further in Section 5.

4 D I SCUSSI ON

Although these simulations are only marginally better than toy mod-
els, they do inform our intuition on the role a fall-back disc may
have in the context of the common envelope simulation. All three
simulations reduce effectively the orbital separation. The simula-
tions with the smallest disc mass reduce the separation the least.
All simulations are instead inefficient in unbinding further enve-
lope gas, with efficiencies at the 5 per cent level, independent of
initial setup. These results echo what is observed in the common
envelope simulations of Passy et al. (2012), where the extreme or-
bital separation decrease witnessed in the in-spiral, results in only
∼10 per cent of the envelope being unbound.

Taking these results at face value we would conclude that further
fall-back events would have to take place until either the envelope
is unbound or the core and companion merge. Below we there-
fore calculate how many fall-back events are needed to achieve the
ejection of the envelope and compare this number with how many
fall-back events would result in an orbital separation commensurate
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Figure 12. Estimated upper limits for the fall-back time of bound gas
parcels leaving the grid boundary at 0.08 yr in the simulation, plotted against
the mass of the cell. Gas parcels leaving the domain above and below the
orbital plane are shown by blue triangles, while parcels leaving the domain
through faces perpendicular to the orbital plane are shown by red circles.

with observations. In Section 5 we place our fall-back model in the
context of additional phenomena which likely take place at the end
of the common envelope rapid in-spiral.

4.1 The time to the next fall-back event
and the number of fall-back events

We calculate the ballistic time it would take gas leaving the compu-
tational domain after interacting with the particles to return into the
computational domain for a second fall-back interaction. We use
the data output at a time of 0.08 yr from the beginning of the simu-
lation, when a substantial amount of gas is leaving the domain. We
assume that the velocity of the gas in each cell within the boundary
of the grid is directed radially outwards. Although all gas within the
boundary has a velocity component directed outwards, using the to-
tal velocity modulus will result in an upper limit of the return times.
As we shall see this is not important because the times calculated
are short. Using this velocity and only the acceleration due to the
gravity of the core and companion, we integrate the change in radial
distance over time steps of one week and determine the time when
the gas parcel comes back to the same position.

We have plotted the estimated fall-back times for each gas parcel
versus the mass of the parcel in Fig. 12 (for simulation Cool).
Here we can see that the upper limits to the return time to the
computational domain has a large spread of values, from a few
weeks to approximately two and a half years. The bulk of the mass-
loss happens through faces perpendicular to the orbital plane (red
circles in Fig. 12), as expected, with the bulk of the return times
having upper limits between a few and 80 weeks. In conclusion the
next fall-back event is likely to happen very rapidly after the first.

The common envelope SPH simulations of Reichardt (2016, with
an identical setup to the simulation of Passy et al. (2012) discussed
here, but extending the simulation time to 10 yr) also demonstrate
that ∼3 yr after the beginning of their simulation some bound en-
velope mass is returning to the centre. This return will however be
slowed down by building pressure. The dynamical return we envis-
age, may therefore take substantially longer (see further discussion
on this point in Section 5).

With knowledge of the efficiencies with which a fall-back event
reduces the orbital separation and unbinds further mass, we can
calculate the number of required events to reduce the separation
to be within the observed values as well as the number of events
required to unbind the envelope.

To calculate the number of fall-back events required to reduce
the separation, we use a target separation value of 4 R�, based on
the work of Zorotovic et al. (2010) and De Marco et al. (2011). We
know that each consecutive fall-back event will have a less massive
disc than the one preceding it and will become less efficient in
reducing the orbital separation. Below we use a constant efficiency
thereby calculating a lower limit for the number of fall-back events
necessary to bring our system to the observed separations. With this
assumption the orbital separation after n fall-back events is given
by:

an = a0(1 − ε)n, (4)

where a0 is the initial orbital separation, 20 R�, ε is the in-spiralling
efficiency, or the reduction in orbital separation divided by the
separation at the beginning of each event, n is the number of fall-
back events we want to know and an is the orbital separation after
n fall-back events, or 4 R�. The efficiency ε = 0.43 based on our
simulations shown in Fig. 11 (where we have used here the in-spiral
from the maximum separation of the Cool simulation). Therefore
the minimum number of necessary fall-back events to bring the
system to within observed separations is 3, but it would be larger if
the in-spiralling efficiency decreased at each event.

Applying this same reasoning to calculate the number of nec-
essary fall-back events to unbind the entire envelope we use the
above equation, but with envelope mass instead of separation and
with the unbinding efficiency of 0.05, as calculated in Section 3.2.
For the calculation we use an initial mass of 0.44 M� and a final
mass of 0.1 M�. The latter value is based on the assumption that a
certain amount of mass can remain in orbit around the binary. This
is highly likely to be the case. Tocknell et al. (2014) calculated that
there is a spread in the specific angular momenta of the bound gas in
the common envelope simulation of Passy et al. (2012), with some
of the gas potentially coming to rest at an orbital separation larger
than the orbital separation of the cores. Although an estimate of this
mass will have to wait for a better calculation, we note that Kashi &
Soker (2011) used 0.2 M� in their somewhat ad hoc consideration
of fall-back discs. With our final mass value and a constant unbind-
ing efficiency of 0.05 we estimate that 29 events will be necessary
to unbind the envelope. If the efficiency were reduced to 0.01 (due
to not considering thermal energy in the amount of unbound mass),
then the number of fall-back events would become 147. These two
numbers would grow to 73 and 376, respectively if the left over
disc mass was 0.01 M� instead of 0.1 M�. All these numbers are
upper limits because as the separation decreases, equal �r changes
deliver increasing orbital energy.

Based on the estimates and considerations above, and even con-
sidering the approximate nature of our model, it seems unlikely that
the number of fall-back events would lead to the correct separation
and the unbinding of sufficient envelope. More likely the two cores
would merge before sufficient envelope could be unbound.

5 FI NA L C O N S I D E R AT I O N S
A N D C O N C L U S I O N

We have carried out a set of simulations under the assumption that
a torus of gas falls back on to the post in-spiral binary. The bi-
nary mass and separation, as well as the disc’s mass and angular
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momentum were tuned to match the central binary, the bound mass
and angular momentum, respectively, measured at the end of a com-
mon envelope simulation by Passy et al. (2012). Our simulations
show that a fall-back disc such as the one we envisage would not
lead to unbinding sufficient mass. We therefore conclude that, alone,
such a process could not achieve substantial further unbinding and
orbital reduction.

One may wonder whether dynamically-returning envelope gas
will in fact form such a disc. Ivanova et al. (2013) reviewed the idea
that at the end of the dynamical in-spiral, a ‘self-regulated’ phase
allows the final separation to be reduced further over a much longer
thermal time-scale. During this phase the energy deposited by the
binary is radiated away by whatever envelope is still bound to the
giant core, the giant contracts, the density surrounding the cores
increases and the binary in-spirals further.

Before the thermally regulated phase, but after the fast-in-spiral
modelled by 3D simulations, there has to be a phase during which
outflowing, bound gas returns towards the binary dynamically and
settles into a temporary equilibrium configuration, which will then
evolve over thermal time-scales. The amount of bound envelope
will dictate the conditions of this dynamical return phase. If a large
fraction of the envelope is still bound, it will return dynamically,
but it may be halted by the pressure that builds while the large mass
of envelope effectively is re-forming a star. It is possible that under
these conditions a disc or torus may not form.

We suggest, however, that the doughnut geometry of the expand-
ing common envelope observed, at least on a large scale, in Passy
et al. (2012; see also e.g. Sandquist et al. 1998) and the high angular
momentum of the returning gas would result in a toroidal structure.
In addition, the rotation profile of the gas that interacts with the
binary during the fall-back sensitively dictates how much orbital
energy is transferred to the in-falling gas (Ostriker 1999), and how
much more in-spiral takes place during the end of the dynamical
phase. Without a full simulation it is difficult to determine how the
end of the dynamical phase would look like, or how much farther
the binary would in-spiral before the system settled into a slower,
thermal-time-scale phase.

The addition of recombination energy in simulations has been
suggested to be an effective way to unbind more envelope gas,
at least under some circumstances (Ivanova et al. 2015; Nandez
et al. 2015). If recombination energy increases gas unbinding, the
mass in a presumed fall-back disc or torus would be lower and an
interaction such as the one envisaged here would result in less in-
spiral. It is often found that the truth is in the middle. It is possible
that the correct combination of unbinding and in-spiral is a cocktail
of recombination energy (which boosts unbinding), some dynamic
fall-back interaction (which promotes further in-spiral), a thermal
readjustment phase and tidal action by a low-mass, circumbinary,
left-over disc as envisaged by Kashi & Soker (2011).

We do not include magnetic fields in our simulations. Regös &
Tout (1995) derived analytically that at the end of the common
envelope in-spiral, field strengths of a few hundred Gauss would
develop via the winding action of the binary (see also Tocknell et al.
2014). As the envelope expands, the field strength would possibly
decrease, but this could increase again if most of the envelope
fell back. Such strong field could give some extra buoyancy to the
returning gas, but would also provide a viscous force (Wardle 2007)
allowing a more efficient redistribution of the angular momentum.

Viscosity is what redistributes angular momentum. Convective
motion promoted by the in-spiral (Ohlmann et al. 2016) alongside
intensified magnetic fields should increase the viscosity in the com-
mon envelope. Viscosity in our simulations has a numerical origin,

and we gauged it to be very low using the criterion of Federrath
et al. (2011), who showed that more than 30 cells per Jeans length
are needed to lower the numerical viscosity (we have 100 cells
in the key regions near the particles). Viscous forces are therefore
poorly reproduced in hydrodynamic simulations (see the discussion
by Rasio & Livio 1996; their section 4.2) something that casts doubt
on simulation results, particularly pertaining end of the dynamical
phase, when in-falling gas interacts with itself.

Despite this shortcoming, simulations of the common envelope
phase are fast improving. In the last two years more codes, en-
compassing additional physics, have been applied to the problem
(Hwang et al. 2015; Nandez et al. 2015; Ohlmann et al. 2016;
Reichardt 2016). Simulating a common envelope for many more
dynamical times following the post-fast-in-spiral phase is not be-
yond the realm of possibility, something that will contribute to
answer the question of the actual geometry of the returning gas and
its effect on the outcome of the common envelope interaction.
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