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ABSTRACT

One of the two outcomes of a common envelope (CE) event is a merger of the two stars. To date, the best known
case of a binary merger is the V1309 Sco outburst, where the orbital period was known and observed to decay
up to the outburst. Using the hydrodynamical code StarSmasher, we study in detail which characteristics of the
progenitor binary affect the outburst and produce the best match with observations. We have developed a set of tools
in order to quantify any CE event. We consider binaries consisting of a 1.52 M� giant and a 0.16 M� companion
with Porb ∼ 1.4 days, varying the nature of the companion and its synchronization. We show that all considered
progenitor binaries evolve toward the merger primarily because of Darwin instability. The merger is accompanied
by mass ejection that proceeds in several separate mass outbursts and takes away a few percent of the donor mass.
This very small mass, nonetheless, is important as it is not only sufficient to explain the observed light curve, but
it also carries away up to one-third of both the initial total angular momentum and initial orbital energy. We find
that all synchronized systems experience L2 mass loss that operates during just a few days prior to the merger and
produces ring-shaped ejecta. The formed star is always a strongly heated radiative star that differentially rotates.
We conclude that the case of a synchronized binary with a main-sequence companion gives the best match with
observations of V1309 Sco.
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stars: rotation
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1. INTRODUCTION

More than half of all stars are in binaries or systems of even
higher multiplicity (triplets, etc.)—e.g., as many as two-thirds of
G stars are in multiple systems (Duquennoy & Mayor 1991). The
binary fraction increases with the spectral class, and for massive
stars it is so large that more than 70% of them are expected to
exchange mass with a companion (Sana et al. 2012). The fate of
a binary is decided by how stable or unstable this mass transfer
is. If the companion is not able to accept all the transferred mass,
then the two stars start to share their outer layers, forming a so-
called common envelope (CE). The outcome of the CE depends
on how much orbital energy is deposited in the envelope. If
the binary deposits enough orbital energy, the envelope could
be ejected and a new binary composed of the companion and
the core of the donor will be left in a tight orbit (Paczynski
1976; Webbink 1984). However, if the binary does not deposit
enough energy, it will instead merge to form a single star (for
more details and for the most recent review of the CE event; see
Ivanova et al. 2013b).

A new class of transients was recently identified. With a to-
tal energy output anywhere in the range of 1045–1047 erg, their
peak luminosities were just below that of Type Ia SNe while
still above that of novae (see, e.g., Bond et al. 2003; Kulkarni
et al. 2007; Bond 2011). The spectra of these mysterious tran-
sients are predominantly red, completely unlike novae, and they
are known under several alternate names: luminous red novae
(LRNe), intermediate luminosity red transients, intermediate lu-
minosity optical transients (ILOTs), V838 Mon-like events, and
supernova impostors. In this work, we pay specific attention to
those of red transients, which are usually labeled as LRNe, with
the most important examples being V838 Mon (Kimeswenger
et al. 2002), V1309 Sco (Tylenda et al. 2011), M85 OT2006-1
(Rau et al. 2007), and M31 RV (Boschi & Munari 2004). We

note that the LRN class is likely distinct in its nature from an-
other class of red transients, known as supernova impostors.
Their progenitors have been observationally identified as dusty
modestly massive stars as, for example, in the cases of SN 2008S
and NGC 300 OT (Prieto et al. 2008; Berger et al. 2009; Smith
et al. 2009).

Several hypotheses have been proposed to explain the nature
of outbursts in different LRNe. The most common model is a
merger, either of two stars or a star and a planet, with such
merger-burst models being first proposed to explain V838 Mon
type events (Soker & Tylenda 2003; Tylenda & Soker 2006).
Later, Soker & Kashi (2012) also suggested that the outbursts
could be powered by mass accretion onto a main-sequence star
from an asymptotic giant branch star.

There were, however, initially some problems with justifying
the physics behind the merger model. For example, Boschi
& Munari (2004) had noticed that the M31 RV, V838 Mon,
and V4332 Sgr outbursts were strongly homological and could
not be explained by merger-powered outbursts that showed too
much dependency on metallicity, mass, and ages. A simplistic
estimate of the energy that could be available from a merger
fell short by a factor of a few from the energy that was radiated
away from M85 OT2006-1 (Ofek et al. 2008). Ivanova et al.
(2013a) provided a further comparison between the theoretical
expectations for a merger-burst model and the observations and
found a number of other inconsistencies. In particular, compared
with theoretical expectations, the observations implied too large
of an increase in radius and luminosity, as well as too long
in duration for the outburst and plateau phases. In addition, the
observed velocities and extremely rapid luminosity decline were
difficult to explain.

The Rosetta Stone was the V1309 Sco outburst, which was
observed before, during, and after its outburst. The key was that
the observations showed that the object was a contact binary
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prior to the outburst and a single object afterward (Tylenda et al.
2011), undoubtedly indicating a merger. On the basis of these
observations, Ivanova et al. (2013a) suggested that the outburst
in V1309 Sco, as well as in similar LRNe, is controlled by the
recombination of the material that is ejected during the CE event.
This model helps to explain the homology of the class including
the plateau phase, the range of the total energy radiated away,
and the differences between the velocities derived from spectra
and from apparent radius expansion as well as the observed
colors. The proposed link between the observations and the
theoretically predicted light curve relies on how much of the
material is ejected and how much kinetic energy that material
carries away.

In this paper we present numerical simulations of the merger
of the V1309 Sco binary, describing in full detail the models that
were used to predict the light curve of V1309 Sco in Ivanova
et al. (2013a). We depict our numerical methods, initial models,
and assumptions in Section 2. To make useful predictions that
would allow the linking of theory and observations, we pay
special attention in Section 3 to how to quantify key quantities
in the merger event—what is bound and unbound material
and the entropy and temperature of the ejecta—as well as
how to determine when the physical merger takes place. We
discuss how the pre-merger binary evolves to the CE events
in Section 4. This includes how the initial conditions (such as
binary’s synchronization and the nature of the companion) could
affect its orbital evolution. We also discuss whether it is possible
to match the period decay observed in V1309 Sco. The details
of the mass exchange and the mass loss prior to the merger are
also described in Section 4, while the mass ejection throughout
the whole process is discussed in Section 5. Further discussion
on how to classify the unbound material and its properties at the
end of the simulation are also given in Section 5. In Section 6
we discuss the symmetry of the merger product, how to get
one-dimensional profiles from the three-dimensional smoothed
particle hydrodynamics (SPH) code, and what the entropy and
rotation profiles the merger product are.

2. MODELLING THE MERGER: METHODS
AND INITIAL CONDITIONS

Observations of V1309 Sco during 2002–2008, presented
in Tylenda et al. (2011), show that the object was a binary
with a steadily decaying orbital period P near 1.44 days. The
binary was argued to be a contact binary with the observationally
derived effective temperature of Teff ∼ 4500 K and luminosity
of 3.0–8.6 L�.

Stȩpień (2011) used these pre-outburst observations to de-
termine a possible binary configuration and the evolutionary
states of the progenitor binary companions. On the basis of that
study, we adopted for our initial conditions a primary star mass
M1 = 1.52 M� and a secondary star mass M2 = 0.16 M�; the
primary star is an early subgiant, while the secondary could be
either a low-mass main-sequence star or a stripped giant core
(essentially, a white dwarf) remaining from the previous mass
transfer.

To model the merging binary, we first evolved both com-
panions individually, using the stellar evolution code EV/STARS
(Eggleton 1971, 1972, which was recently updated Glebbeek
et al. 2008). The M1 = 1.52 M� primary was evolved until
we could match the observations for temperature, luminosity,
and radius (to fulfill the requirement to fill the Roche lobe for
the known orbital solution). When a lower-mass companion was
adopted to be a main-sequence star, we evolved it using the same

stellar code EV/STARS to the same age as the primary star. When
a lower-mass companion was a white dwarf—the case when the
secondary could be a stripped core of a red giant and was more
massive in the beginning—we did not model the possible first
mass transfer onto current primary, as that mass gain that had
occurred to the current primary a long time ago during its main
sequence and does not significantly affect its current subgiant
structure.

At the second step, we used the one-dimensional stellar struc-
tures (obtained from the stellar evolution code) as initial condi-
tions for three-dimensional hydrodynamical simulations. For the
three-dimensional simulations, we used the code StarSmasher,
which is based on the SPH method; see, for example, Monaghan
(1992). The code was developed by Lombardi et al. (2006),
and the equations of motion have been updated by Gaburov
et al. (2010; the most recent version of the code is described in
Lombardi et al. 2011).

Each star was relaxed in the SPH code individually, by
evolving the profile provided by the stellar code to its hydrostatic
equilibrium in three dimensions. The relaxed stars then were
placed in the inertial frame of a binary.

In our studies, we performed 13 merger simulations. The list
of all merger models with the corresponding initial conditions
can be found in Table 1. Below we describe in detail the reasons
for the diversity of the adopted initial conditions.

2.1. Nature of the Low-mass Companion and
the Number of SPH Particles

In order to find the best scenario for the observations presented
by Tylenda et al. (2011), we compared two possibilities for
the nature of the low-mass secondary: a main-sequence star
and a stripped core of a red giant (a degenerate companion).
A degenerate companion is considered as a compact object
particle in SPH, characterized by its mass and interacting only
gravitationally with other SPH particles. A main-sequence star
was treated as described above and was generally represented
by several thousand SPH particles.

The number of SPH particles that represent the primary
star and the secondary companion need to differ by about an
order of magnitude, with more SPH particles representing the
primary star. This does not correlate directly with the masses
of the companions but rather with their average densities.
To have comparable smoothing lengths for particles inside a
main-sequence star and inside a subgiant, the number of SPH
particles that describes the secondary must be much smaller
than the number for the primary. If instead a small companion is
represented by a comparable number of particles as the primary,
then when the companion is crushed inside the primary star
during the merger, computational time increases substantially.

In Table 1 we list the numbers of particles adopted at the
start of each simulation: N1 is for the primary star, and N2 is for
the secondary star. If N2 = 1, the companion is modeled as a
compact object particle.

2.2. The Radius of the Primary Star

Mapping a one-dimensional star of radius Rev
RG into a three-

dimensional star and then relaxing it in a three-dimensional
code usually leads to a change of the star’s radius (see also
the discussion about the somewhat similar effect for polytropic
stars in Renvoizé et al. 2002). Further uncertainty arises from
extracting the radius of a three-dimensional star represented by
particles instead of on a continuous grid. Also, in stellar codes,
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Table 1
Initial Conditions for the Performed Simulations in This Work

Model Rev
RG RRG R∗ RV a Porb fsync fRLOF f ∗

RLOF N1 N2 Companion Star

ps334 3.40 3.34 3.56 3.26 6.32 1.42 0.915 0.90 0.98 50161 1 Degenerate
mn351 3.40 3.51 3.70 3.52 6.32 1.42 0.000 0.97 1.02 99955 19938 Main-sequence
pn351 3.40 3.51 3.70 3.52 6.32 1.42 0.000 0.97 1.02 99955 1 Degenerate
ps351 3.40 3.51 3.70 3.39 6.32 1.42 1.000 0.93 1.02 169831 1 Degenerate
ms376 3.65 3.76 3.96 3.63 6.55 1.50 1.000 0.97 1.05 99955 1974 Main-sequence
ps376 3.65 3.76 3.96 3.63 6.55 1.50 1.000 0.97 1.05 99955 1 Degenerate
ms372 3.70 3.72 3.98 3.59 6.40 1.45 0.937 0.98 1.08 50161 1974 Main-sequence
ps379 3.73 3.79 4.00 3.68 6.32 1.42 0.854 1.01 1.10 99955 1 Degenerate
pn344 3.66 3.44 3.63 3.46 6.38 1.44 0.000 0.94 0.99 99955 1 Degenerate
ps375 3.66 3.75 3.95 3.63 6.38 1.44 1.000 0.99 1.08 99955 1 Degenerate
mn344 3.66 3.44 3.63 3.46 6.38 1.44 0.000 0.94 0.99 99955 4944 Main-sequence
ms375 3.66 3.75 3.95 3.63 6.38 1.44 1.000 0.99 1.08 99955 4944 Main-sequence
pn319 3.39 3.19 3.38 3.20 6.38 1.44 0.000 0.87 0.92 80023 1 Degenerate

Notes. Name of the model: p stands for a point mass secondary, m stands for a main sequence secondary, n is for non-synchronized
cases, s is for synchronized cases, and three digits stand for the value of the relaxed primary radius.
Radii: Rev

RG is the radius of the donor in the stellar code in R�, RRG is the radius of the donor assuming the outermost particle distance
in R�, R∗ is the radius of the donor after adding 1 smoothing lengths for the outermost particle in R�, and, RV is the volume-equivalent
radius of the donor.
Binary initial setup: a is the orbital separation in R�, Porb is the orbital period of an initially relaxed binary in SPH code in days, fsync

is the degree of synchronization; fRLOF is the ratio RV to the radius of the Roche lobe and characterizes overflow of the donor, f ∗
RLOF is

the ratio R∗ to the radius of the Roche lobe.
Resolution: N1 is the number of particles for the giant stars, N2 is the number of particle for the accreting star.

the stellar radius is by definition the radius of the photosphere,
which cannot be resolved by our SPH code. One way to define
the stellar radius in three dimensions is to find the position of
the outermost particle. However, the outermost particle’s kernel
extends the density to 2hout from the location of this particle
(see for more details Monaghan & Lattanzio 1985), where hout
is the smoothing length of the outermost particle.

Let us consider the mapping and relaxation in more detail.
When a star is first mapped into three dimensions, the outermost
particles will be located at a position RRG that is about 2hout less
than Rev

RG. While the relaxation proceeds, the position of the
outermost particle can change, and this change depends on the
number of particles, rotation of the star, and the method used to
relax the star, for example, if artificial drag force and/or artificial
viscosity are used. Hence, RRG at the end of the relaxation can
in some cases be smaller and in other cases larger than Rev

RG. In
the relaxed model, the density goes to zero at different radii R,
with R being a function of the polar angle θ and azimuthal angle
ϕ. The quantity RRG + 2hout is the maximum of R(θ, ϕ) over
all possible θ and ϕ values. Because the density is sometimes
zero inside the radius RRG + 2hout and always zero outside this
radius, the radius RRG + 2hout is an overestimate of the average
radius.

In Table 1 we list the primary radii found by several
methods—Rev

RG is the radius as obtained by the one-dimensional
stellar evolutionary code, RRG is the radius after relaxation in
three-dimensional SPH code determined by the outermost par-
ticle, and the effective radius R∗ ≡ RRG + hout. In all the cases,
the desired radius is within a smoothing length from either RRG
or R∗.

Arguably the most important radius is the “volume-
equivalent” radius RV . In this case, we sum up over all particles
mi/ρi , where mi and ρi are the mass and density of each particle
i, to find the total volume V occupied by the particles. Then we
solve for radius as RV = (3V/4π )1/3. We find that RV tends
to be on the lower boundary of our other radius estimates, very
close to RRG, and never exceeding R∗. Through this paper, we
use RV as the default definition of the primary radius.

2.3. Orbital Separation, Orbital Period, and
the Roche Lobe Overflow

The binary orbital separation a, the orbital period Porb, and
the ratio of the donor star radius to its Roche lobe radius that
quantifies the Roche lobe overflow (RLOF), fRLOF = RV /RRL,
are all closely connected. With the approximation from Eggleton
(1983), in our system RRL = 0.574a.

While the observed orbital period right before the merger of
V1309 Sco was measured to a quite good precision, it cannot
be stated firmly if that period should be a true initial period
for our merger simulations. Further, small variance of the pre-
merger orbital period would not affect the outcome qualitatively;
however, for our simulations fRLOF is very influential on how fast
an initial binary would decay into a complete merger.

Adopted initial values for a, Porb, and fRLOF are listed in
Table 1. In the adopted notation, if fRLOF > 1, the donor
star is overflowing, and if fRLOF < 1, the donor is still
confined in its Roche lobe. We also list f ∗

RLOF = R∗/RRL. If
f ∗

RLOF > 1, a donor may start to lose particles because of their
oscillation around their positions by a smoothing length, even if
fRLOF < 1.

2.4. Synchronization

While stars with convective envelope are believed to be
quickly tidally synchronized, it is not fully clear if a relatively
fast expanding subgiant will remain tidally locked to its 10 times
less massive companion. We therefore considered cases with
different synchronization, from non-rotating stars to fully syn-
chronized cases. In a fully synchronized binary, the angular
velocities of both companions are the same as that of the orbit
Ω∗,1 = Ω∗,2 = Ωorb = 2π/Porb. To quantify the degree of syn-
chronization in each simulation, we introduce fsyn ≡ Ω∗/Ωorb.
The critical value fsyn = 1 corresponds to a fully synchronized
case, while fsyn = 0 corresponds to an fully non-synchronized
(irrotational) case: see Table 1. In our simulations, each star is
first relaxed with its own spin and only then placed in a binary.
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Figure 1. Orbital period for the simulation pn344. The instantaneous orbital
period is shown with the solid line, and the apparent orbital period is shown
with the dotted line.

3. DEFINITIONS

3.1. Orbital Period

In a system that is not represented by only two mere point
masses, but by a collection of many particles, the definition of
what exactly is an orbital period is ambiguous. While several
approaches can be used, we will discuss and use in this paper
two of them.

First, we can find the instantaneous orbital period Porb,inst at
each time step. This can be done by assuming a Keplerian orbit
of two bodies, where the mass of each body is the mass bound to
that companion, and the separation is given by the locations of
the cores of the stars (for more details, see Lombardi et al. 2006).
The real orbit is slightly eccentric once orbital dissipation starts,
hence the instantaneous orbital period can have an oscillatory
behavior, with the period of oscillations being equal to the real
orbital period (see Figure 1).

We also can find the apparent orbital period—this is how long
it takes for an observer to see one complete binary revolution.
It is found as follows.

1. For the calculations of the apparent orbital period only,
the center of coordinates (0, 0, 0) has been assigned to the
center of mass of the more massive star, and the orbital
plane is X–Y .

2. t0 is the moment of time when the low-mass companion
crosses the X–Z plane at some (x0, 0, 0).

3. t1 is the moment of time when the low-mass companion
has passed through all the Cartesian quadrants (made a
360◦ rotation around the center of coordinates) and crosses
X–Z again at some (x1, 0, 0).

4. The apparent orbital period is then Porb,app = t1 − t0.

Note that this method does not intrinsically imply that two
interacting bodies would necessarily have a Keplerian orbit.
Because of the effects of tidal bulges, the apparent orbital
period is generally smaller than the instantaneous period (see,
for example, Equation (7.6) in Lai et al. 1993), especially when

the envelope of the primary star is starting to be significantly
puffed up (see Figure 1). Also note that apparent period can be
found for the first time only after one orbital period, as can be
seen in Figure 1.

3.2. Ejecta

For the analysis of our simulations, we define ejecta as the
unbound material of the binary system. We consider two ways
to define unbound material.

Conventional definition. We say that a particle belongs to the
ejecta if the total energy of that particle (the sum of kinetic,
internal, and gravitational energies) is positive:

1

2
miv

2
i + miΦi + miui > 0. (1)

Here vi is the velocity of the particle i relative to the center of
mass (fixed at the origin), mi is the mass of the particle i, and
ui is the specific internal energy of the particle i. The potentials
of each particle Φi and their gravitational accelerations are
calculated using direct summation on NVIDIA graphics cards,
softened with the usual SPH kernel as in (Hernquist & Katz
1989; for more details on implementation and justification, see
Lombardi et al. 2011). The first term in Equation (1) is the
kinetic energy, the second is the gravitational potential energy,
and the third is the internal energy of the particle i.

Abridged definition. We say instead that a particle corresponds
to the ejecta if the sum of kinetic and gravitational energies is
positive:

1

2
miv

2
i + miΦi > 0. (2)

Note that this definition implies that internal energy does not
play a role in determining whether the matter leaves the system.
By default in this paper we use the abridged definition, as
discussed more below.

3.3. Common Envelope

We recognize that the CE is formed by the expanding envelope
of the primary. We define that a particle belongs to a CE if the
following conditions are satisfied.

1. A particle is bound to the binary system—the sum of kinetic
and gravitational energies, calculated with respect to the
binary, is negative.

2. A particle is located outside of the Roche lobe of the
secondary.

3. A particle is counted only if its density is above the threshold
density ρTR = 10−6 g cm−3.

At the start of RLOF, material from the primary streams
inside the Roche lobe of the secondary, forming an accretion
disk. Material transferred via the Lagrangian point L1 cannot be
unambiguously considered as forming a CE, at least not before
it starts to encompass the Roche lobe of the secondary. This
motivates the second condition described above, which is taken
into account only when the orbital separation exceeds the initial
primary radius.

At the beginning of the binary interaction, a few low-mass
surface particles are typically perturbed from the surface but
remain bound to the binary for a while. However, because they
have extremely low densities, they do not significantly affect the
orbital evolution, nor do they form a continuous envelope. Each
of those very low density particles can take a volume comparable
to that of the primary star. We therefore limited the density
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of particles that contribute to the CE. Our threshold density
implies that even if a sphere that envelops both the primary and
the secondary is filled up with particles below this threshold
density, the total mass of these particles will be �10−4 M�.

For each particle that satisfies the conditions above, we find
the volume that the particle fills, Vi = mi/ρi . We then sum
those volumes and solve for the volume-equivalent radius of
the CE, RCE.

3.4. Entropy

For each particle, we calculate the entropy as

Si = kmi

mHμi

ln
T

3/2
i

ρi

+
4

3

miaT 3
i

ρi

+ S0,i , (3)

where S0,i is a constant and depends only on the chemical
composition of the particle (see Bisnovatyi-Kogan 2001), Ti
is the temperature of the particle computed in the same way
as in Lombardi et al. (2006), ρi is the density of the particle
found by the SPH code, k is the Boltzmann’s constant, mH is the
hydrogen mass, a is the radiation constant, and μi is the mean
molecular weight. The SPH code does not evolve the chemical
composition—the code conserves μi for each particle in the
system. However, because the code uses as input realistic stellar
models, particles can have different μi and accordingly different
S0,i . We find S0,i as described in the Appendix.

The specific entropy of the unbound material for each time-
step, sunb, can be obtained by dividing the total entropy of the
ejecta by the total unbound mass, munb, i.e.,

sunb ≡
∑

i,unb Si∑
i,unb mi

. (4)

The summation here is only over the unbound particles.
We also define similarly the average temperature of the

unbound material at each time-step as

T̄unb =
∑

i,unb Timi∑
i,unb mi

. (5)

3.5. Start of the Common Envelope, Merger,
and the End of the Simulations

We define several crucial phases in the evolution of our
merging binary.

First, we find when the CE phase starts, tCE. For that we use
the conventional definition of the common envelope—this is the
moment when the companion starts to orbit inside the material
that is bound to the primary core. Note that, observationally, a
binary likely would not be distinguished as a binary from the
moment the CE phase started.

When the companion just starts to orbit within the common
envelope—the “loss of corotation” stage—the orbit still decays
relatively slowly. This stage is then followed by the plunge-
in phase, during which the companion quickly loses its orbital
angular momentum as the orbit quickly shrinks. Assuming that
this shrinkage is a half of the orbital separation during one
initial orbital period, the value of ȧ/a is about −4 × 10−6 s−1.
We hence adopt the definition tplunge as the time when ȧ/a =
−4 × 10−6 s−1.

We say that the binary is fully merged when the separation
between the cores (in other words, the separation in our

Figure 2. Instantaneous orbital separation (solid line) and the radius of the
primary star envelope that is transitioning into the common envelope (dotted
line) for the simulation pn319. The black solid circle marks the start of the
common envelope, tCE, and the black solid box marks the stars of the plunge-in,
tplunge.

instantaneous Keplerian orbital solution) is less than 0.1 R�.
This corresponds to an instantaneous orbital period

Porb,inst < 0.004

(
M�
Mtot

)1/2

day, (6)

where Mtot is the total mass of the binary. (Note that while the
companion is already inside the primary star, the instantaneous
orbital period is not a physically valid quantity but is an
upper limit for the “true,” or apparent, period.) For our case
of M = 1.68 M�, this corresponds to Porb,inst � 0.003 day.
Thus, the merger time, tmerg, is defined as the moment when the
orbital separation (or the orbital period) is less than 0.1 R� (or
0.003 day).

4. ORBITAL EVOLUTION PRIOR TO MERGER

In this section, we analyze how the initially detached binary
approaches RLOF, how it starts the CE phase, and how it
merges. The “approach” phase is far from being well understood
(Ivanova et al. 2013b), not least because three-dimensional
simulations would usually start at RLOF. While many of our
models also start close to their RLOF, we also simulate a number
of cases for dozens of days or more prior to the RLOF.

In Figure 2, we show as an example the evolution of the
instantaneous orbital separation in the model pn319. This
separation is compared with the radius of the envelope that
is initially just the primary envelope and then transforms to the
CE (the radius of that envelope is calculated as described in the
Section 3.3). We can distinguish three phases.

1. The approach to RLOF and the start of the CE phase.
2. The loss of corotation (or phase I of the CE event as per

adopted classification; see, e.g., Section 2 in Ivanova et al.
2013b).
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3. The plunge-in with the termination (or phase II as per
classification).

4.1. Why does the Orbit Decay and
the Common Envelope Start?

It was suggested by Darwin (1879) that if the orbital angular
momentum of the binary is less than three times the spin
angular momentum of its companions, the binary is dynamically
unstable and the stars would fall to each other. The revised
condition for the instability is that the configuration is unstable
once the orbital angular momentum is less than the critical value
(Hut 1980):

Jorb < Jcr = 3(I1 + I2) Ω (7)

where I1 and I2 are the moments of inertia of the binary compo-
nents, and Ω is the angular velocity of the synchronous rotation
and revolution, Ωorb � 5×10−5 Hz for all our simulations. For a
detached binary the orbital angular momentum, in the two-point
mass approximation, is

Jorb =
√

G
M2

1 M2
2

M1 + M2
a(1 − e2), (8)

where e is the eccentricity of the orbit. All our simulations start
in an circular orbit, e = 0, and the orbital angular momentum is
about the same, Jorb � 2.8–2.9 × 1051 g cm2 s−1.

We compute the moment of inertia for each of our stars
individually. As all rotation is around the z-axis,

I =
∑

i

mi

(
x2

i + y2
i

)
, (9)

where the particle coordinates xi, and yi are measured with
respect to the center of mass of the star under consideration.
The moments of inertia in our primary stars are in the range
of I1 = 1.84–2.77 × 1055 g cm2, and our non-degenerate
companion has I2 = 1.1 × 1052 g cm2. For the subset of
simulations where the low-mass companion is non-degenerate,
the range of I1 is narrower, I1 = 2.4–2.6 × 1055 g cm2. The
smallest value corresponds to the simulation pn319, and the
largest value corresponds to the simulation ps379. In the case of
our most compact donor, in the simulation pn319, we have
Jcr = 2.8 × 1051 g cm2 s−1 (in this simulation, Jorb � 2.8 ×
1051 g cm2 s−1), hence the system is right at the border of the
Darwin instability by the criterion defined by Equation (7). In
all other simulations, Jcr > Jorb.

The other way to express the criterion for the Darwin
instability is in terms of the angular momentum: the binary
is unstable once the total angular momentum is less than critical
value (Hut 1980)

Lcr = 4

[
1

27
G2 M3

1 M3
2

M1 + M2
(I1 + I2)

]1/4

(10)

where M1 and M2 are the masses of two companions (here note
that a factor of G was missed in the original work). For our case,

Lcr � 4.07 × 1051

[
I1 + I2

2.5 × 1055 g cm2

]1/4

g cm2 s−1 . (11)

The center of mass in our simulations is located at the origin.
We then compute the total angular momentum of our system by
using L = r × p for each SPH particle:

Ltot,SPH =
∑

i

ri × (mivi). (12)

Table 2
Angular Momenta and Darwin Instability

Model I1 Jorb Jcr |Ltot,SPH| Lcr Lb Lunb

ps334 1.90 2.85 2.92 3.75 3.83 2.76 0.987
mn351 2.52 2.82 3.87 2.85 4.10 2.35 0.502
pn351 2.52 2.85 3.87 2.85 4.10 2.32 0.529
ps351 2.06 2.85 3.17 3.91 3.90 2.62 1.300
ms376 2.63 2.90 3.83 4.18 4.15 3.25 0.937
ps376 2.63 2.90 3.83 4.18 4.15 3.25 0.935
ms372 2.60 2.87 3.92 4.10 4.14 3.18 0.915
ps379 2.77 2.85 4.25 4.07 4.20 2.92 1.150
pn344 2.39 2.86 3.62 2.87 4.05 2.31 0.556
ps375 2.64 2.86 4.00 4.09 4.15 2.81 1.290
mn344 2.39 2.86 3.63 2.86 4.05 2.37 0.494
ms375 2.64 2.86 4.00 4.09 4.15 3.16 0.924
pn319 1.84 2.86 2.80 2.87 3.79 2.08 0.783

Notes. I1 is the moment of inertia of the primary star in 1055 g cm2, Jorb is
the orbital angular momentum of a two point-mass binary in 1051 g cm2 s−1,
Jcr is the critical orbital angular momentum of a two point-mass binary in
1051 g cm2 s−1, Lb is the total angular momentum for the bound material at the
end of the simulation in 1051 g cm2 s−1, Lunb is the total angular momentum for
the unbound material at the end of the simulation in 1051 g cm2 s−1, Ltot,SPH

is the total angular momentum for the SPH particles in 1051 g cm2 s−1, Lcr is
critical angular momentum in 1051 g cm2 s−1.

The condition that Ltot < Lcr was derived for the case when a
binary system is in tidal equilibrium, and tidal equilibrium can
be established only if coplanarity, circularity, and corotation
have been established (e.g., Hut 1980). In a binary for which
corotation has not yet been established, as in some of our
simulations, the instability sets in even earlier as even more
of the orbital angular momentum would have to be spent on
spinning up the companions. If a donor star has overfilled its
Roche lobe, the condition is also inapplicable, as the system
has already become dynamically unstable. Table 2 shows that
Ltot,SPH < Lcr in all our simulations, except when R∗ is
significantly larger than the Roche lobe radius. This reconfirms
that the system we consider is affected by Darwin instability.

4.2. Synchronization of the Binary System
and how the Primary Expands

Let us consider first the model ps351, with a synchronized
donor and a degenerate companion. The simulation starts with
a primary that has fRLOF < 1 but f ∗

RLOF > 1. Once the primary
has filled the volume equivalent of its Roche lobe, its surface
material starts to expand rapidly into the Roche lobe of the
companion (see Figure 3 and the top left panel in Figure 4).
After this moment, the primary keeps expanding, overfilling its
Roche lobe. Only 2.8 days elapse between the initial RLOF and
the CE formation, even though the CE does not appear very
well visually distinguished in the right top panel of Figure 4.
The time between the primary starting to expand rapidly and
the moment when the CE has formed is only two initial orbital
periods—this is a dynamical event.

Another synchronized model, the model ps334, is a binary
where the donor was well inside of its Roche lobe as even
f ∗

RLOF < 1. However, this model also shows the same character-
istic behavior described for the model ps351—in particular, it
shows the same rapid expansion of the primary once RLOF com-
mences. We find that this fast increase of the primary radius with
the CE starting soon thereafter is observed in all synchronized
simulations with a degenerate companion. The same models
show that most of the transferred mass is lost from the binary
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Figure 3. Instantaneous orbital separation (solid line) and the radius of the
primary star envelope transitioning into the common envelope (dotted line) for
the simulation ps351. The blue dashed line marks 97.6 days, when the sharp
decay in the orbit and rapid increase in the radius of the primary start. The black
solid circle marks the start of the common envelope, tCE. And the black solid
box marks the stars of the plunge-in, tplunge.

(A color version of this figure is available in the online journal.)

Figure 4. Cross-sectional slices for density in the orbital plane for the simulation
ps351. The top left panel (t = 97.6 days) is when the primary has overflown
its Roche lobe and more material is being transferred to the companion. The
top right panel (t = 101 days) shows that the Roche lobe of the companion
is overflown. The bottom left panel (t = 104 days) is for the stage when the
companion spirals into the primary, while the bottom right panel (t = 106 days)
shows the two orbiting cores engulfed by the envelope of the primary; after
about 0.9 day the cores merge.

(A color version of this figure is available in the online journal.)

via the Lagrangian point L2. The duration of mass loss through
L2 is comparatively short—e.g., in ps351 L2 mass loss starts
at about 97.7 days, just after the rapid radius increase starts; L2
mass loss occurs only when a dynamical timescale mass transfer
takes place.

Figure 5. Cross-sectional slices for density in the orbital plane for the simulation
pn319. The top left panel (t = 71.9 days) is when the primary has overflown its
Roche lobe and more material is being passed to the companion. The top right
panel (t = 75 days) shows that the Roche lobe of the companion is overflown.
The bottom left panel (t = 78.1 days) is for the stage when the companion
spirals into the primary, while the bottom right panel (t = 81.2 days) shows the
two orbiting cores engulfed by the envelope of the primary; after about 0.5 day
the cores merge.

(A color version of this figure is available in the online journal.)

Note that this rapid expansion does not necessarily lead to the
drastic changes in the light curve of the outburst, which could be
solely formed by the recombination wave fronts, Ivanova et al.
(2013a).

Now let us consider the case where the donor is not synchro-
nized at the start of a simulation, e.g., pn319. Like ps334, this
system started with the primary well within its Roche lobe, and
the donor starts to transfer mass when it overflows its Roche
lobe, on day 57.2 in Figure 2, and see also Figure 5. The star
keeps slowly expanding while overfilling its Roche lobe, until it
reaches the size of the orbit, then the fast mass transfer starts to
the interior of the Roche lobe of the secondary. A slow increase
in radius is observed in all non-synchronized models as well as
in synchronized with a non-degenerate companion. In none of
the non-synchronized models do we observe any noticeable L2
mass loss—the material from the Roche lobe of the secondary,
if lost, was lost isotropically.

We speculate that this slow expansion of the primary star
toward the orbit could be a numerical artifact related to SPH
particles oscillations around their positions by a smoothing
length h (about 5% of the radius for surface particles). For most
of the simulated models, it implies that the primary star would
find itself often in “instantaneous” RLOF; this unavoidably
speeds up the start of the CE phase. On the other hand, the
oscillations by 5% of the stellar radius are comparable to
the scale over which convective eddy exists. In giants that have
surface gravity close to zero, the surface not smooth, and the
convective plumes, which are comparable in size to the giant
radius, would rise above the conventionally defined surface (e.g.,
see Chiavassa et al. 2011).

4.3. Synchronization of the Binary System and the Timescale

To understand how the initial conditions affect the pre-merger
evolution, we first consider the effect of synchronization. There
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Figure 6. Evolution of the orbital period for the simulations pn351 (dotted),
ps351 (solid), and mn351 (dashed).

are several pairs of simulations that have the same initial
conditions except for fsync.

1. pn351 and ps351 both have primaries at about RLOF (see
also Figure 6).

2. ps334 and pn319 have almost identical conditions, and both
primaries are well within their RLOF.

3. Two pairs, pn344–ps375 and mn344–ms375, are harder
to analyze cleanly. In each pair, the relaxed primary has
significant RLOF in the case of a synchronized binary, while
the non-synchronized binary is well within its Roche lobe.

It can be seen that if the relaxed stars are within their
Roche lobes (f ∗

RLOF < 1), then the synchronized binary, as
expected, has a slower period decay, with up to a 10 times
difference (see Table 3 data for the simulations in pairs 1
and 2 above). Being an RLOF binary cancels this effect, and
in case 3—synchronized but overflowing their Roche lobe
primaries with f ∗

RLOF > 1—results in a faster merger.
We conclude that the synchronization prior to RLOF leads to

a slower period decay.

4.4. Companion’s Nature and the Timescale

We consider the effect of the companion’s nature, degenerate
(represented by a point) versus non-degenerate (represented by
a group of particles), by comparing the following pairs.

1. pn344 and mn344 (primaries are well within their Roche
lobes, f ∗

RLOF < 1).
2. pn351 and mn351 (f ∗

RLOF < 1 but f ∗
RLOF = 1.02—

primaries have some particles going beyond their Roche
lobes).

3. ps376 and ms376 (f ∗
RLOF = 1.05).

4. ps375 and ms375 (primaries are near their Roche lobe limit
with fRLOF = 0.99 and f ∗

RLOF = 1.08).

Unlike the comparison in Section 4.3, the degree of RLOF in
the primary is the same within each pair, as each member of the
pair has the same synchronization.

Table 3
Important Times

Model tCE tplunge tmerg tend

ps334 154.91 157.10 158.4 283
mn351 10.40 13.42 13.6 15
pn351 11.80 13.08 14.7 30
ps351 100.45 104.85 106.9 156
ms376 26.9 29.02 31.2 43
ps376 39.72 42.58 44.9 61
ms372 11.2 12.80 15.1 23
ps379 3.30 6.28 7.7 55
pn344 21.40 24.01 25.6 46
ps375 8.90 12.74 14.1 36
mn344 20.50 24.22 24.4 31
ms375 9.66 13.50 13.8 20
pn319 72.90 80.40 81.7 115

Notes. tCE is when the low-mass companion is engulfed by the envelope of
the more massive star, tplunge is when the low-mass companion is plunged into
the donor, tmerg is when the merger took place and tend is last moment in the
simulations. The times are in days.

In binaries where the primary is well within its Roche lobe
(case 1) or is just at its Roche lobe limit (case 2), the merger time
only weakly depends on the nature of the companion, differing
only by about a day (see Table 3). In cases of larger primaries
that also noticeably overfill their Roche lobes (cases 3 and 4), a
non-degenerate companion leads to a shorter merger timescale,
by up to three times. We can conclude that a non-degenerate
companion may affect the orbital decay timescale but likely not
as significantly as the synchronization of companions.

4.5. Can We Match the Observations?

Tylenda et al. (2011) found that they can fit V1309 Sco pre-
outburst observations with an exponential period decay, as a
function of time t:

Pobs = P0 exp

(
b0

t − t0

)
(13)

where P0 = 1.4456 (the period in days), b0 = 15.29, and
t0 = 2455233.5 was a Julian Date at several hundred days after
the merger took place. The binary period decay was traced in
observations for about 2000 days before the binary was seen
last as such. Numerical simulations of a binary that is almost at
its RLOF and for the duration of thousands of its orbital periods
are well beyond both the numerical capabilities of our code
and the computational time demand. In our longest simulation,
the binary spent 158 days before it merged. A similarly short
interval prior to merger has only four observational data points
for periods, where each of those four points was derived using
50 observations; the errors in the period determination for those
four points were 0.002–0.008 day. We therefore can attempt to
qualitatively compare only the tail of the decay, while assuming
that the same fit is valid for the tail of observations as for the
whole set.

For each simulation that started with fRLOF < 1, we trace the
apparent orbital period decay from the start of the simulation
until the start of the CE phase, tCE. We fit this orbital evolution
to the exponential decay described by Equation (13) in order to
find best-fit values for P0 and b0; we also look at how quickly
the system completes the merger, tmerg. The results for all the
simulations that have been evolving for 20 days or more before
the binary has merged are shown in Table 4.
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Figure 7. Evolution of the orbital period for the simulation pn319 (the dots).
The solid line is the best fit with P0 = 1.5472 days, t0 = 105.458 days, and
b0 = 7.7985 days, while the blue dashed line is the fit with P0 = 1.6242 days,
t0 = 129.596 days, and b0 = 15.29 days.

(A color version of this figure is available in the online journal.)

Table 4
Fit Parameters for Simulations with Merger Times Larger than 20 days

Model P0 b0 t0 RSS ν

ps334 1.91 ± 0.02 135 ± 10 440 ± 10 114 85
ps351 2.17 ± 0.08 202 ± 30 470 ± 30 169 69
ms376 1.537 ± 0.003 1.52 ± 0.07 36.0 ± 0.4 30 16
ps376 1.84 ± 0.04 35 ± 6 159 ± 10 10 21
pn344 1.506 ± 0.002 1.49 ± 0.03 28.3 ± 0.1 6 12
mn344 1.500 ± 0.001 1.33 ± 0.02 26.8 ± 0.1 3 11
pn319 1.547 ± 0.002 7.8 ± 0.1 105.5 ± 0.5 22 46

Notes. P0, b0 and t0 are the fitted parameters for the function given by the
Equation (13) (in days); RSS is the residual sum of squares in units of 10−6.
ν = N − n is the number of degrees of freedom, where N is number of
observations and n is the number of fitted parameters. Only models with ν > 10
are shown.

Equation (13) implies that an exponential orbital decay takes
place if b0 is much smaller than t0. We find that the models
ms376, pn344, mn344, and pn319 have the period decay shaped
similarly to that found by Tylenda et al. (2011)—Table 4 shows
that on those simulations t0 is much larger than b0. On the other
hand, for a monotonical period decay, b0 should be of the order
of t0. In the models ps334, ps351, and ps376, t0 is about three
times larger than b0, and the decay in those simulations is almost
linear with time, unlike in the observations of V1309 Sco.

In Figure 6 we show examples of the linear and exponential
orbital decays in the models ps351, pn351, and mn351 (note
that pn351 and mn351 did not have enough pre-merger models
to deduce values of b0 and t0). Note that in the simulation ps351,
the orbital period decay is a linear decay for about 90 days, with
an abrupt decline thereafter.

In Figure 7 we show two fits for Equation (13) for the
simulation pn319. One fit uses values from Tylenda et al. (2011),

Figure 8. Energies in the ejecta in the simulation ps376—the kinetic energy
(solid line), the internal energy (dotted line), the potential energy (dash-dotted
line), and the total energy (dashed line); the blue long-dashed line shows the
evolution of the ejecta mass. On the top panel the ejected material is determined
using the criterion (1), and on the bottom panel the ejected material is determined
using the criterion (2).

(A color version of this figure is available in the online journal.)

and another uses fit parameters as in Table 1. The difference
between the results is marginal and within the error bar from
observations (�0.01 day). We conclude that the period decay
of this model can be fit with about the same shape as the period
decay found for V1309 Sco.

We conclude that even though synchronized systems with a
degenerate companion have a longer period decay time, they
do not exhibit the shape of the decay observed in the case
of V1309 Sco. This shape can be explained by either (1) a
nonsynchronized binary with a degenerate companion or (2) a
binary with a main-sequence companion (either synchronized
or unsynchronized).

5. EJECTA

5.1. Which Material is Unbound?

It has been proposed in Ivanova et al. (2013a) that the
outburst of V1309 Sco was controlled by the recombination of
material ejected during the binary merger. The total energy of
the outburst, during the recombination, would therefore depend
on the amount and speed of the ejected material. To reproduce
the light curve of the outburst, one needs then the ejecta mass
loss rate as a function of time. In this section we concentrate on
the details of how to recover the mass loss rate with time. This
task requires the identification of the ejected material right at
the moment when it starts its initial escape.

In Section 3.2 we have discussed two ways to define the
unbound material. Let us consider how both definitions work in
the case of some particular example, the simulation ps376. In
Figure 8 we show the evolution of the kinetic, potential, internal,
and total energies for the material that was classified as ejecta,
using the criteria given by Equations (1) and (2).

In the “conventional” case, the internal energy of all “ejected”
material greatly exceeds its kinetic energy (see Figure 8). As the
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Figure 9. Top panel: how two criteria on determining unboundedness work
for the particle 52287 in the simulation ps376 (the solid line denotes the
conventional definition, and the dotted line denotes the abridged criterion).
Bottom panel: the kinetic (dotted-dashed line), potential (long dotted-dashed
line), and internal (long dashed line) energies for the same particle.

simulation proceeds, the internal energy stays at a large value.
This is not what would be expected in a case of an adiabatic
expansion anticipated for our ejected and expanding material.

With the “abridged” definition, the internal energy decreases
with time as expected for an adiabatic expansion. In this case
the kinetic energy dominates the energy of the ejecta by the end
of the simulation, even though values of the kinetic energy in
the ejected material by both definitions are similar.

A careful check shows that the difference between the two
methods is primarily due to several particles located around the
low-mass companion. The internal energy of these shock-heated
particles is high, but their relative velocity to the center of mass
is very low.

Figure 9 compares how both criteria work for the particle
52287 in the simulation ps376. It can be clearly seen that the
internal energy of this particle at all time is much larger than
its kinetic energy. After the binary merges, the “conventional”
criterion implies that this particle is unbound to the system, while
the “abridged” criterion indicates that the particles is bound.

In Figure 10 we show the positions of the particle 52287
projected onto the orbital plane. It can be seen that this particle
remains in the vicinity of the merger product, its orbit becomes
wider after the merger, but its path follows the movement of
the center of mass of the merger product until the end of the
simulation. We find that this particle (among other similarly
heated particles) is unable to transfer its heat to neighboring
SPH particles on the timescale of the simulation. Therefore, we
chose to use the “abridged” criterion in order to classify all the
particles with this behavior as bound particles.

5.2. Mass Outbursts

We found that the ejection of stellar material usually proceeds
in several mass outbursts, when the mass loss rate increases
significantly for short periods of time and then drops again.

Figure 10. Trajectory of the particle 52287 in the simulation ps376 projected
onto the orbital plane. The particle finishes near (x, y) = (−2.1, 0.7) at the end
of the simulation.

Figure 11. Mass of the ejecta (black dashed line) and its derivative (blue solid
line) as functions of time, in the simulation pn351. Each peak shown in the plot
corresponds to one episode of the mass outburst.

(A color version of this figure is available in the online journal.)

To identify and distinguish these mass-ejection outbursts, we
compute the change in the mass of the ejecta with time,
ṁunb ≡ dmunb/dt . For example, in Figure 11 we can distinguish
three episodes of the mass outbursts, each corresponding to a
spike in the mass-ejecta rate ṁunb. The first peak corresponds
to the mass outburst before the merger (during the plunge-in),
the second peak corresponds to the mass outburst during the
merger, while the last one corresponds to the mass outburst
after the merger has been completed. Recall we defined merger
as the time when aorb < 0.1 R�; see Section 3.5.
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Table 5
Mass, Duration, and Kinetic Energy of Each Episode of Mass for Each Simulation

Model mb
unb md

unb ma
unb tb td ta Eb

kin,∞ Ed
kin,∞ Ea

kin,∞ Eb
kin,max Ed

kin,max Ea
kin,max

ps334 · · · 0.0405 0.0048 · · · 4.02 1.15 · · · 1.62 0.08 · · · 5.91 0.15
mn351 0.0100 0.0280 · · · 0.97 2.63 · · · 0.53 0.95 · · · 1.40 1.34 · · ·
pn351 0.0115 0.0160 0.0123 1.08 1.44 5.92 0.59 0.55 0.14 1.69 1.04 0.23
ps351 · · · 0.0467 0.0227 · · · 3.80 5.50 · · · 1.85 0.24 · · · 6.19 0.45
ms376 0.0321 0.0123 · · · 1.90 1.6 · · · 1.08 0.25 · · · 4.06 0.40 · · ·
ps376 · · · 0.0409 · · · · · · 2.28 · · · · · · 1.54 · · · · · · 5.40 · · ·
ms372 0.0317 0.0119 · · · 2.10 1.50 · · · 1.17 0.32 · · · 4.27 0.43 · · ·
ps379 · · · 0.0410 0.0255 · · · 3.70 3.10 · · · 1.65 0.38 · · · 6.27 0.65
pn344 0.0128 0.0165 0.0085 1.30 1.25 4.38 0.64 0.56 0.09 2.13 1.08 0.16
ps375 · · · 0.0412 0.0384 · · · 2.70 4.30 · · · 1.61 0.56 · · · 6.12 0.90
mn344 0.0108 0.0237 · · · 1.00 2.00 · · · 0.52 0.62 · · · 1.52 1.09 · · ·
ms375 0.0320 0.0130 · · · 2.00 1.40 · · · 1.22 0.33 · · · 4.45 0.44 · · ·
pn319 0.0147 0.0199 0.0209 1.20 2.40 8.40 0.67 0.73 0.31 2.19 1.33 0.51

Notes. munb, t, Ekin,∞, and Ekin,max are the mass ejecta in M�, duration in days and kinetic energy at infinity in 1046 erg, and
maximum kinetic energy at the moment of ejection of each mass ejection. The superscript a implies “after the merger,” and the
subscript b implies “before the merger” while d implies “during the merger.”

Table 6
Velocities at Infinity

Model vini
esc vini

esc,bin munb
tot Eunb

kin,∞ vunb∞ junb/jini

ps334 404 319 0.0549 1.94 189 8.06
mn351 396 319 0.0382 1.51 199 7.74
pn351 396 319 0.0415 1.30 177 7.50
ps351 398 319 0.0800 2.28 169 6.96
ms376 383 313 0.0470 1.46 177 8.01
ps376 383 313 0.0466 1.75 194 8.08
ms372 382 317 0.0464 1.55 183 8.10
ps379 381 319 0.0808 2.26 168 5.88
pn344 400 317 0.0415 1.33 180 7.86
ps375 383 317 0.0859 2.40 168 6.16
mn344 400 317 0.0362 1.21 183 8.01
ms375 383 317 0.0479 1.65 186 7.92
pn319 415 317 0.0583 1.80 176 7.88

Notes. vini
esc is the escape velocity from the surface of the initial primary, vini

esc,bin

is the escape velocity from the initial binary (using a), munb
tot is the total unbound

mass in M�, Eunb
kin,∞ is kinetic energy at infinity in 1046 erg, vunb∞ is the velocity

of the ejecta at infinity, junb/jini is the ratio between the specific unbound angular
momentum and specific initial angular momentum. All velocities are in km s−1.

A summary of the mass outbursts in different simulations
is presented in Table 5. We find that the mass-outburst before
the merger is absent in synchronized system with a degenerate
donor—the same systems that feature rapid radius expansion
and L2 mass loss. In contrast, all non-synchronized simulations
with a degenerate donor show all three outbursts mentioned
above. Binaries with a non-degenerate donor do not produce a
mass outburst after the merger; instead, they always have two
episodes of mass ejection independent of the initial synchro-
nization. The duration of all episodes is on the order of the
dynamical timescale of the system. Most of the ejected material
is ejected during the mass outbursts, but not all (see also Table 6
for the total mass of the material to infinity).

Compared with the determination of the mass of the ejecta,
proper values of the ejecta kinetic energy exactly at the moment
when the material was ejected are harder to determine. This
is because the ejection is a continuous process, and each mass
outburst can take from a few hours up to several days. At each
time-step we have some particles that are ejected right then,
but other particles were ejected during the previous time-step

Figure 12. Kinetic energy of the ejecta (black dashed line) and ṁunb (blue solid
line) in the simulation pn351.

(A color version of this figure is available in the online journal.)

and have already started their travel to infinity, so they already
have lost some initial kinetic energy after partially overcoming
the potential well. An example can be seen in Figure 12—the
mass of each outburst loses its kinetic energy with time until it
approaches a constant value at infinity. In Table 5 we provide
the kinetic energy that all particles contributing to each mass
outburst had at the moment they were identified as unbound for
first time. We anticipate that those values are lower estimates for
the kinetic energy of the ejecta, as velocities inferred from these
energies do not greatly exceed the escape velocities. However,
the relative values between the outbursts are more meaningful
and show that ejecta from the initial outburst usually have a
higher velocity than those from the second or third outburst.

It was shown that the observed light curve in V1309 Sco could
be reconstructed with two mass outbursts of 0.02 and 0.04 M�
mass loss, with corresponding kinetic energies for each outburst
as 0.9 × 1046 erg and 0.75 × 1046 erg (Ivanova et al. 2013a).
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Figure 13. Kinetic energy (top panel) and mass (bottom panel) of the unbound
material in the simulation ms376. The dotted lines indicate the final values at
infinity.

These values are within the range of the obtained values in
our simulations (see Table 5), with non-degenerate and non-
synchronized systems being the closest match.

5.3. Properties of the Ejected Material at the Infinity

5.3.1. Velocity of the Ejecta

The energy formalism commonly used to evaluate an outcome
of a CE event assumes that the material is ejected with energy
just sufficient to move that material to infinity and that its kinetic
energy there is zero and hence does not need to be taken into
account in the energy balance. We find that the kinetic energy
of the ejected material is significantly non-negligible at infinity;
moreover, it is not much different than at the moment it was just
ejected (see Figure 13). Since at the onset of the simulations
the two stars are considered point masses, we can compute the
initial orbital energy by simply using Eorb = GM1M2/(2aorb),
where M1 = 1.52 M�, M2 = 0.16 M�, and aorb � 6.3 R� (see
Table 1). Hence, Eorb ∼ 7.3 × 1046 erg, which can be compared
with the kinetic energy given by Table 6. We can conclude that
the ejecta takes away up to one-third of the initial orbital energy.
Note that we did not use the CE energy formalism anywhere in
our calculations.

In Table 6 we show the velocities of the ejected material at
infinity, vunb

∞ , and they are as large as 42%–51% of the initial
escape velocity from the surface of a donor. The velocities we
obtain are very consistent with the average velocities of the
ejecta from the observations, 160–180 km s−1 (Mason et al.
2010). We note that, as with the velocity at the moment of the
ejection, at infinity there is also no single-valued velocity for all
the ejected material, and ejecta speeds are usually significantly
higher at the start of the mass loss, for the outer layers, and
smaller for material ejected after the merger is complete.

5.3.2. Angular Momentum

The total angular momentum carried away by the ejecta is
between 17% and 33% of the initial total angular momentum

Figure 14. Evolution of the specific entropy (black solid line) and mass (blue
dotted line) of the ejecta in simulation ps376.

(A color version of this figure is available in the online journal.)

of the binary, even though it is taken away by an extremely
small amount of the material (see Table 2). The specific angular
momentum of the ejected material exceeds the initial specific
angular momentum by a factor of 5.8–8.1 (see Table 6). The
relative fraction of the total angular momentum that is carried
away with the ejecta is highest in the simulations with a
synchronized binary and a degenerate donor and smallest in
non-synchronized binaries with a non-degenerate donor.

5.3.3. The Entropy and Temperature of the Ejecta

The specific entropy of the material in the envelope of
the unperturbed donor, s/(kNA), is about 22 mol g−1. The
initial mass loss starts when the CE has not yet formed but
the ejected material is already shock-heated, with its specific
entropy increased by about 20 mol g−1 (see Figure 14). Once
the CE forms and the companion starts its spiral-in, the ejected
material is the most shock-heated throughout the complete
event—its specific entropy exceeds its initial value by up to
50 mol g−1. As the companion continues to plunge-in, more
of the envelope of the donor gets ejected, but this material
is already less shock-heated, and overall the entropy of the
ejecta decreases and reaches a minimum—the big dip that takes
place at about tmerg. As the merger is completed and the ejected
material evolves adiabatically, its entropy remains constant, at a
value about 8 mol g−1 higher than the initial value of the specific
entropy in the donor. This general behavior is characteristic for
all the simulations, while the final and maximum entropy values
varying somewhat from case to case.

Figure 15 shows the evolution of the average temperature
for the unbound material, in the same simulation ps376 as
for the specific entropy discussed above. The first spike in the
simulation takes place at the first contact between the low-mass
companion and the surface of the giant and involves only a
small quantity of ejected material. The second spike corresponds
to the first episode of the mass ejection—when the CE gets
formed. The third spike is due to the shock-heating during the
merger. After the merger is completed and there are no more
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Figure 15. Average temperature of the unbound material (simulation ps376).

Figure 16. Ring formation in the simulation ps375.

(A color version of this figure is available in the online journal.)

mass outbursts, the ejecta temperature demonstrates adiabatic
cooling. In our simulations, the equation of state does not
include ionization. In a real merger, the recombination process
will undoubtedly change the temperature evolution (Kasen &
Ramirez-Ruiz 2010; Ivanova et al. 2013a).

5.4. Ejecta Appearance

The ejection proceeds in mass outbursts. If outbursts are well
separated by a minimum in the rate of the mass loss, they might
be distinguished even when the ejecta is very far from the merged
object. Indeed, in all our simulations with a synchronized binary,
the ejecta appear in the form of a ring. In Figure 16 we show
the formation of a typical ring structure from the initially spiral-
shaped outflow. In the case shown, the outer ring is formed by the
material from the mass outburst during the merger, and the inner,

Figure 17. Distribution of particles projected onto the equatorial plane when
the merger product has reached its hydrostatic equilibrium for the simulation
ms376.

less pronounced ring, is formed by the last mass outburst. We do
not see a ring or another well distinguished structure formation
in simulations with a non-synchronized binary—there, the ejecta
is rather isotropic, with many “clumps.”

6. MERGER PRODUCT

The observations of V1309 Sco after the outburst, when its
light curve was rapidly declining, show that its temperature
is cooler than that of its progenitor. Its radius, inferred from
luminosity and temperature, reached ∼310 R� at maximum.
In about 15 days after the peak, the radius of the object was
estimated to have reduced already to ∼150 R�, and in a few
years it shrunk to about 5 R�, just a bit larger than the progenitor
(Tylenda et al. 2011). While the implied radius of ∼150 R�
during the luminosity plateau is related to the wavefront of
cooling and recombination of the ejecta (Ivanova et al. 2013a),
the observations during the light curve decline correspond to the
surface of the merged star that becomes visible once the ejecta
has fully recombined and become transparent.

6.1. Equilibrium

We analyze the merger product once it is in hydrostatic equi-
librium. We define this as when the kinetic energy of the merged
object is much smaller than its internal energy, Ein/Ekin > 30,
and the internal and kinetic energies of the merger product re-
main nearly constant for a time interval comparable to its dy-
namical timescale. By that moment at least 1.6 M� of the bound
mass is enclosed in a radius less than 100 R� (see Figures 17
and 18). The same radius of 100 R� corresponds roughly to the
surface of optically thick material. More specifically, in simula-
tions with a non-degenerate companion, the bound objects are
fully enclosed in a radius less than 120 R�, while in simulations
with a degenerate companion bound material can extend much
farther away, up to ∼600 R�. The dynamical timescale for a
1.6 M� object of 100 R� is about 15 days, and as we found
from the simulations, the kinetic and thermal energies usually
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Figure 18. Distribution of particles projected onto the yz plane when the merger
product has reached its hydrostatic equilibrium for the simulation ms376.

stabilize in about half that time. The low-mass expanded enve-
lope can be expected to contract on its own thermal timescale,
which is just about a few years, as in observations. This ther-
mal contraction phase, with the rapid loss of energy from the
envelope with radiation, however, cannot be modeled with the
SPH code, despite the timescale being close to the dynamical
timescale.

6.2. Symmetries

We find that the distribution of particles of the merger product
is fairly symmetric, both in the equatorial (xy) plane and the
polar axis (yz) plane; however, rotation flattens the merger
product so that there are more particles near the equator than
near the poles (see Figures 17 and 18).

We calculate the mass of the bound material in different
directions. The northern and southern hemispheres have a very
similar mass (except for the core), with the ratio of masses very
close to one. Similarly, we also calculate the mass enclosed
in a cone with an opening angle of 50◦ along +x, +y, and +z
directions. These numbers reveal that the ratio between m+x

and m+y is about one, while the mass ratios of m+x/m+z and
m+y/m+z are up to 1.5 in the case of a non-synchronized binary
with a main-sequence donor. At the same time, a synchronized
binary with a main-sequence donor is almost symmetric.

6.3. Star Profiles

For rotating stars, it is argued that the stellar equations should
be solved across isobaric shells instead of spherical shells (e.g.,
Heger et al. 2000). Accordingly, the transformation from a three-
dimensional SPH model to a one-dimensional model can be
done by averaging on isobaric surfaces.

We sorted the particles by means of two methods, (1) pressure
and (2) radius, where the particles with maximum pressure is
defined as the center in the method (1), and the center of mass
of the bound material is defined as the center of the merged
product for the method (2). Once we have sorted the particles
by pressure or radius, we average the thermodynamics and

Figure 19. Radius profiles for the merger product for the simulation ms376. The
black open triangles show the profile for the merger product sorted by pressure,
while the red open boxes are sorted by radius. See the text for details about the
sorting methods.

(A color version of this figure is available in the online journal.)

dynamical variables of the SPH particles by a regular fixed
bin.

In Figure 19 we compare the radius profiles of the formed star
(the model ms376) obtained by the radius-sorting and pressure-
sorting methods. Except for the very inner part near the core, the
radius profiles obtained with two methods are indistinguishable.
A similar comparison of density and temperature profiles
obtained with the two methods show that there is a slight effect
for the temperature near the surface (it is lower when isobaric
surfaces are used), but otherwise both methods continue to give
similar results (see Figures 20 and 21).

6.4. Angular Momentum

We find that the merger product does not rotate as a solid
body—see Figure 22, where we show the specific angular
momentum profile of the merger product in simulation ps376
compared with that of the initial RG star and that of the
merger product if it were to rotate rigidly. We note that our
simulations use the Balsara switch in the artificial viscosity in
order to minimize the spurious transport of angular momentum
(Lombardi et al. 1999).

The envelope of the merger product, from about 1.25 M�
to 1.5 M�, shows rotation close to that of a rigid body with
Ω = 10−5 Hz—note that the star is still expanded, which is
why the rotation appears to be slower than in the initial star.
Overall, the merger product has two to three times more angular
momentum than in the initial star. If the merger product contracts
to 5 R� within several years, as in the observations, the critical
surface angular velocity will become Ωcrit = 10−4 Hz and the
critical value of the specific angular momenta near the surface
will be jcrit ∼ 1019 cm2 s−1. Therefore, it is possible (although
not necessary) that the outer layers of the merger product might
rotate close to the critical rate. We also note that the rotational
profile with dh/dr < 0 is secularly unstable on the thermal
timescale of the star (Kippenhahn 1969).
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Figure 20. Density profiles for the merger product for the simulation ms376.
The black open triangles show the profile for the merger product sorted by
pressure, while the red open boxes are sorted by radius. The blue solid line
corresponds to the initial profile of the RG.

(A color version of this figure is available in the online journal.)

Figure 21. Temperature profiles for the merger product for the simulation
ms376. The black open triangles show the profile for the merger product sorted
by pressure, while the red open boxes are sorted by radius. The blue solid line
corresponds to the initial profile of the RG.

(A color version of this figure is available in the online journal.)

6.5. Entropy

In Figure 23 we show the specific entropy of the merger
product, comparing it with the initial entropy profile of the donor
as given both by the one-dimensional stellar evolution code and
by the relaxed three-dimensional SPH model. All entropies here
are obtained using Equation (A13), which takes into account
chemical composition and radiation. This equation, however,
neglects partial ionization. This results in the artificial peak near

Figure 22. Specific angular momentum profile for the merger product (black
open triangles) and the primary star (red open boxes), for the simulation ms376.
The blue lines show the specific angular momentum for Ω = 10−4 Hz (dashed
line), Ω = 10−5 Hz (solid line), and Ω = 10−6 Hz (dotted line).

(A color version of this figure is available in the online journal.)

Figure 23. Specific entropy profiles for the merger product for the simulation
ms376, assuming a fully ionized gas. The black open triangles show the profile
for the merger product, the red dotted line corresponds to the profile for the
relaxed primary in SPH, while the blue solid line corresponds to the profile
given by the stellar model before the relaxation in SPH.

(A color version of this figure is available in the online journal.)

the surface in the entropy profile of the initial stellar model.
Otherwise, the relaxed three-dimensional star and the initial
one-dimensional star are very similar everywhere except very
close to the core, which is represented by an artificial particle.
The merger product has been shock-heated throughout, with no
trace of either the convective envelope with uniform specific
entropy of about 22 mol g−1 or of its convective companion that
had a uniform specific entropy of about 12 mol g−1.
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7. DISCUSSION

In this paper we have studied the V1309 Sco outburst by
adopting a model in which the outburst results from the merger
of a binary consisting of a 1.52 M� giant and a 0.16 M�
companion, with a 1.44 day orbital period prior to merger.
We have analyzed how initial conditions such as the nature of
the companion (whether it was a white dwarf or a main-sequence
star) and the initial synchronization between the orbit and the
rotation of the donor could affect the dynamical evolution
before, during, and after the merger, and we have compared
our results with available observations.

For this analysis we have developed a set of tools that allow us
to quantify the numerical simulations of CE events in a general
case, independently of whether the event under consideration
would result in a merger, as in the case of V1309 Sco, or in
a binary formation. In presenting this set of tools, we have
specifically discussed the following.

1. How to compute the effective radius of the donor star—we
have found that the volume equivalent radius is best when
considering mass transfer (Section 2.2, also Section 3.3).

2. How to define the orbital period in a binary decaying into a
CE—we have analyzed the binary from the point of view of
instantaneous (found from Keplerian orbits) and apparent
(visually detectable) orbital periods (Section 3.1).

3. The relevant characteristic timescales—we have discussed
how to determine quantitatively the start of the CE in
simulations, as well as the start of the plunge-in and the
moment of the merger (Section 3.5).

4. How to distinguish the unbound material—we have deter-
mined that the positiveness of the sum of only the potential
and the kinetic energies for an SPH particle should be used
as a criterion for its unboundedness and that inclusion of
the internal energy in the criterion can lead to an error in
the identification of the ejected material (Sections 3.2 and
5.1).

5. The symmetry of the post-CE merger product—we have
compared the degree of asymmetry of the formed star in
different directions as well as compared the mapping of the
three-dimensional structure to a one-dimensional profile
using spherical and isobaric surfaces (Sections 6.2 and 6.3).

By comparing the initial orbital angular momenta with the
critical angular momentum determined from the spin of the
stars, we have showed that all the binary configurations we
have considered should be affected by the Darwin instability
at the start of the simulations. But what can be expected from
the Darwin instability, what are the timescales for the orbital-
decay evolution that we obtain, and how reasonable are these
timescales when compared against observations?

As expected, a longer timescale for the orbital decay takes
place in a synchronized binary than a non-synchronized binary
with all other initial conditions being similar. Our longest
simulation proceeds for ∼150 days before the merger. During
the early stage orbital decay (before any mass transfer), the
orbital-decay timescale P/Ṗ is as long as several decades, while
by the end, the decay has accelerated significantly and is much
faster. We also are able to fit some of our simulations with the
observationally obtained exponential decay; the latter implies
the match for Ṗ /P̈ . This suggest that the timescales in the
simulations and in the observations are similar and are on the
order of several to a dozen years before significant mass loss.

Note that there is no comparison between the merger
timescale from the simulation and the observational ones, as

we cannot know the value of R/Rrlof at the start of the observa-
tions. The initial value of R/Rrlof is very important, as the decay
timescale depends sensitively on how close the donor is to its
RLOF. A donor that is 99% to its RLOF would merger easily
1000 times faster than a donor that is 94% to its RLOF, even if
observationally they would have the same orbital periods. For
our characteristic timescales t0 − tmerg, the numbers are not ter-
ribly different than the observations, as we have t0 being larger
than the merger time by up to several hundred days, similar
to in the observational fitting from Tylenda et al. (2011), where
t0 = 2455233.5, and if we assume that tmerg is roughly 2454530,
then t0 − tmerg is about 700 days.

However, can the Darwin instability itself provide such a fast
dissipation of the orbit, or could another reason be primarily
responsible for the orbital evolution? Tylenda et al. (2011)
discussed that, along with the Darwin instability, it is possible
that the merger could have started because the system entered
into deep contact, a scenario contemplated by Webbink (1976,
1977) and started to lose mass via L2. It is expected that the
Darwin instability would act on the timescale of tidal friction,
τTF, and that Ṗ /P̈ ∼ τTF (Eggleton & Kiseleva-Eggleton
2001), while the L2 mass loss is expected to act on the same
timescale as L1 mass transfer Webbink (1976, 1977). Pejcha
(2013) has argued that the Darwin timescale in V1309 Sco
is too long—likely thousands of years—compared with Ṗ /P̈
inferred from observations, where Ṗ /P̈ is only about a few
years. Instead, it was proposed that the observed period decay
is due to non-conservative mass transfer from the primary to
the companion accompanied by a simultaneous mass loss via a
wind, during at least several pre-merger years.

Let us investigate this in more detail. The tidal friction
timescale for a star of mass M1 and radius R1 in a binary
with a companion of mass M2 at an orbital separation a can
be estimated as (Eggleton & Kiseleva-Eggleton 2001)

τTF = τV
a8

9R8
1

M2
1

(M1 + M2)M2
(1 − Q)2, (14)

where Q is the quadrupolar deformability of the star, and
Q = 0.223 for polytropes of n = 3/2 (Eggleton 2006). For
our initial binaries, τTF/τV ≈ 40–70 (the factor varies from 40
to 70 because of our range of initial conditions and the strong
power dependence of the timescale on the ratio a/R1). Here τV
is an intrinsic viscous timescale (Zahn 1977). For a star with a
substantial convective envelope, τV is the timescale on which
turbulent friction takes place, or the global convective turnover
timescale. The detailed stellar model from our stellar evolution
code gives the global convective turnover time as ∼260 days for
our primaries, consistent with a simple estimate from the Zahn
formula. Accordingly, τTF is 30–50 yr. This value is smaller
than the range quoted in Pejcha (2013) by one to two orders of
magnitude. This is due to two main reasons. First, Pejcha (2013)
assumes Q � 1, which, while appropriate for polytropes with
n = 3, leads to an overestimate of τTF by nearly a factor of
two for stars with large n = 1.5 convective envelopes. Second,
Pejcha (2013) adopts that τV can be as large as decades, which
is significantly larger than the actual global convective turnover
time given by a stellar evolution code or the formula for the
friction timescale (Equation (4.11) in Zahn 1977).

We further note that originally the Darwin instability and its
relation with the viscous timescale were formally established in
the limit of small viscosities (weak friction) for equilibrium tides
(Alexander 1973; Zahn 1977; Hut 1981; Eggleton & Kiseleva-
Eggleton 2001). The basic assumption of equilibrium tides
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is that isobaric surfaces within the star are always equipotential
surfaces—i.e., the star is in the state of hydrostatic equilibrium
(Eggleton & Kiseleva-Eggleton 2001). It might be expected
that this approximation breaks down when a star approaches its
Roche lobe. Indeed, Eggleton (2012) argued that the Darwin
instability in binaries with extreme mass ratios and evolved
companions (as in the case of V1309 Sco) can have a timescale
as small as a few days.

However, even though the Darwin instability has most likely
naturally led to the merger both in V1309 Sco and in our
simulations, it is not likely that it will naturally explain the rate of
the orbital decay in our simulations. The artificial viscosity in our
simulations cannot match completely the convective viscosity
that has played a role prior to merger. In a star with a convective
envelope, viscosity comes from up and down motions, which
are not present in our SPH model. In the SPH code, an artificial
viscosity acts only when a velocity gradient is present and hence
has a very different effect on the evolution of a binary orbit than
what would be caused by the convective viscosity in a real
binary.

We should clarify that the orbital decay due solely to the
Darwin instability (before any mass loss) could have been
observed in our simulations only while R∗ remains smaller than
Roche lobe of the donor—once R∗ is larger, the donor would
always have some SPH particles that find themselves outside of
its Roche lobe. Those particles may get lost from the binary, may
relocate to the Roche lobe of the secondary, or may get slightly
more energetic and trigger further expansion, but ultimately
these SPH particles oscillations speed up the orbital decay. In
most of our simulations, the significant orbital evolution prior to
merger takes place when R∗ > RRL and is affected by particles
oscillations.

Because the timescales cannot be used for a direct compari-
son, we have to look to other features. The simulated shape of
the orbital decay does match the observed exponential shape for
a synchronized binary with a main-sequence companion or for a
non-synchronized binary with a degenerate companion. On the
basis of this pre-merger behavior, these are our favored types of
progenitor binary. In contrast, the orbital decay in synchronized
binaries with a degenerate companion is not consistent with the
observed exponentially shaped decay.

Now let us return to the mass loss from the system. In our
simulations, we indeed observe situations in which most of
the mass lost from the system prior to merger proceeds via
L2. However, this occurs only in initially synchronized binaries
(note that as synchronized binaries we include systems with the
degree of corotation down to 0.85)—non-synchronized systems
show mainly an isotropic mass loss in “clumps.” Why do
synchronized binaries in our simulations have L2 mass loss
prior to merger, while non-synchronized do not? This could
be because the specific angular momentum of the material that
is transferred from the donor to the secondary in a synchronized
system is higher than in an non-synchronized system, and a
particle can be lost via L2 only if it has an angular momentum
high enough to at least reach L2 point. Indeed, we find that the
average specific angular momentum of SPH particles moving
in the neighborhood of L1 point toward the secondary in
synchronized systems exceeds the angular momentum threshold
posed by the L2 location, but only by about 50%. It also might
be because only in synchronized systems the donor is shaped as
theoretically expected simplified Roche lobe, while in an non-
synchronized binary, the donor is significantly more spherical
and starts to lose mass before it extends to L1.

A fully non-conservative L2 mass loss in our system leads to
a decrease in the specific angular momentum of the remaining
binary. It forces the orbit to shrink, which leads to the increase in
RLOF; the latter accelerates exponentially the L1 mass transfer,
which quickly becomes fully dynamical, and the system merges.
Indeed, in our simulations, L2 mass loss, once started, lasts
only for a few days. However, non-synchronized binaries, those
that do not have L2 mass loss, merge too, even though it takes
much longer for them to complete the merger after their L1
mass transfer started. Hence, depending on how well the system
is synchronized, L2 mass loss can precede the merger, but it does
not have to be responsible for the merger to occur. Our results
therefore suggest that L2 mass loss could not be responsible for
a long-term (several years timescale) orbital decay in V1309
Sco.3 This, coupled with our estimate for τTF above and with
our checks of the Darwin instability criterion, advocates that it
was indeed the Darwin instability that resulted in the observed
orbital decay.

Soker & Kashi (2012) discussed that the outbursts for ILOTs
could be powered by mass accretion onto a main-sequence star,
which could potentially launch jets. We found that the non-
synchronized cases do not form an accretion disk, since the
donor’s particles do not have enough angular momentum to go
through L1. In contrast, the synchronized cases show a few SPH
particles around the main-sequence star (accretion disk). The
total mass of these particles is ∼0.0005 M�, and their velocities,
relative to the main-sequence star center of mass, are up to
200 km s−1. For comparison, the escape velocity of the main-
sequence star is close to 600 km s−1. The highest velocity gas
in our simulations, which is just above the escape velocity of
the donor, is reached when the CE is starting or has started;
hence, the highest velocity gas is not due to jets/winds from the
accretion disk. The accompanying visualizations are useful for
understanding the flow pattern of the gas (see the animations in
the online journal, Figures 24 and 25).

We have analyzed how the mass loss proceeded throughout
all of our simulations, finding that most of the mass loss takes
place in up to three individual mass outburst—before the merger,
during the merger, and after the merger was completed—where
each outburst takes away from about 0.0048 to 0.047 M� and
lasts from one to a few days (several dynamical timescales of
the initial binary). Our synchronized systems with a degenerate
companion lack a clear separation between the mass outbursts
before and during the merger. All our simulations with a non-
degenerate donor have two episodes of mass outburst and lack
the third mass outburst after the merger is completed. All
simulations with a non-synchronized donor and a degenerate
companion show three mass outbursts and vice versa. The
observed light curve was reconstructed best with two mass
outbursts, suggesting that the latter systems are least likely to
represent the initial binary. The total amount of the ejected mass
in our simulations does not vary much between the models and
is from 0.038 M� to 0.086 M�.

The kinetic energy of the ejected material at infinity is
comparable to the initial binding energy in the envelope of
the donor. This suggests that the energy formalism used for
predicting CE outcomes needs to account for kinetic energies

3 We also find that Equation (3) in Pejcha (2013) is incorrect, as can be
verified by checking this equation in the limiting case of β = 1, when the mass
is lost with specific angular momentum of the donor star. Pejcha (2013) uses
Equation (3) for the orbital period evolution during the mass transfer and at the
same time for calculating mass transfer rates and, consequently, for the mass
loss rate. Detailed derivations of orbital evolution for various modes of the
mass loss and the mass transfer can be found in Soberman et al. (1997).
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Figure 24. Column density animation showing the merger of a non-
synchronized binary containing a M = 1.52 M�, R = 3.51 R� giant and a
M = 0.16 M� degenerate companion with an initial orbital period of 1.42 days
(simulation pn351).

(An animation and a color version of this figure are available in the online
journal.)

in the energy budget. We find that velocities at infinity are
160–190 km s−1; they are in the same range as were found in
observations of V1309 Sco using the profile of the He i emission
line, 160–180 km s−1 (Mason et al. 2010).

We find that the specific angular momentum of the ejected
material is significantly larger than the specific angular mo-
mentum of the material in the initial binary, by 5.8–8.1 times.4

In our simulations involving a synchronized binary, the ejecta
form a well-distinguished outer ring with a bit less pronounced
second inner ring—this is the consequence of L2 mass loss. In
non-synchronized binaries, the ejecta have the shape of an ex-
panding bubble with “clumps.” Currently, the observations do
not yet allow us to distinguish whether the ejecta form a ring or
bubble (Nicholls et al. 2013), but it may be done in the future.
In this case, it can provide a further insight on how much the
system was synchronized at the start.

Martin et al. (2011) proposed that if a merger produces a disk,
this disk could be the progenitor of Jupiter-like planets around
the merged star. We observe that ejecta is “clumped” in all our
simulations, with the clumpiness being especially apparent in
the case of non-synchronized systems. The long-term evolution
of these clumps cannot be traced in our code.

After the merger, hydrostatic equilibrium in the bound mass
is obtained fairly quickly, within a dozen days. By then, most of
the bound and optically thick mass is located within a radius
of 100 R�. This luminous and expanded object will further
experience thermal relaxation, with an initial timescale of a few
years. We find that the formed star is significantly shock-heated
compared with its progenitor and, before thermal relaxation
takes place, has an entropy profile characteristic of a radiative
star. With our SPH code, we cannot judge when exactly the

4 We note that in the γ -formalism that uses angular momentum conservation
to predict the outcomes of the CE events, this value would be taken as 1.5
(Nelemans et al. 2000). There is no reason to believe that the same value of
γ ∼ 1.5 is valid for all the systems entering the CE phase. Since this parameter
has a tremendous effect on the outcome, where a difference in only a few
percent in its value can change the outcome completely (Woods et al. 2011;
Ivanova et al. 2013b), a fine-tuning for each kind of binary needs to be done.

Figure 25. Column density animation showing the merger of a synchronized
binary containing a M = 1.52 M�, R = 3.76 R� giant and a M = 0.16 M�
main-sequence companion with an initial orbital period of 1.50 days (simulation
ms376).

(An animation and a color version of this figure are available in the online
journal.)

envelope of the star will become convective again, but it may
take place as quickly as within a few years after the merger.

Partially as a result of the high angular momentum loss with
the ejecta, and partially because of a relatively slow rotation of
the initial system, the merged objects are not expected to be
necessarily at their critical rotation even after they are thermally
relaxed and shrunk—their angular momenta are only about two
to three times of the initial ones. The merged star, when in
hydrostatic equilibrium but before its thermal equilibrium, does
not appear to have a solid body rotation—while the donor
is still expanded, its outer layers rotate significantly slower
than its inner layers. For a time after the thermal relaxation
(which takes only a few years for the expanded outer layers),
the obtained specific angular momentum profile predicts that
the outer layers will rotate faster than the inner layers. It may
be expected that during the thermal relaxation, as the object
transforms from a radiative to a convective star and at the same
time would attempt to redistribute the angular momentum, the
object will have strong differential rotation. This may result
in an efficient dynamo operation that will be accompanied
by X-ray luminosity (Soker & Tylenda 2007). Following the
derivation in Soker & Tylenda (2007), this X-ray luminosity
can be estimated to be ∼1031 erg s−1 during the envelope
contraction phase. We note however that their estimate might
be not fully applicable, as at the initial contraction stage the
object is radiative. A more detailed study of how the thermal
relaxation proceeds in the merger product is definitely required
for understanding magnetic field formation when the convective
envelope is developed for the first time. Currently, 5 yr after
the outburst, the ejecta provides a hydrogen column density
from ∼1023 to 1024 cm−2 and can hide an X-ray object with
the luminosity up to 1032 erg s−1. Indeed, a recent Chandra
observation, made in 2013, did not detect a single photon during
35 ks exposure (S. Rappaport 2013, private communication).

We conclude that all considered progenitor binaries can
produce an outburst resembling the V1309 Sco event. The
comparison of details of observations with features obtained
in simulations, such as how the mass is ejected, what is the
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radius of the merged object, and the shape of the orbital period
decay before the merger, most favors a synchronized binary with
a main-sequence companion. Future observations of the shape
of the ejected material (a shell-type bubble versus a ring) and the
X-ray luminosity can help with further understanding of V1309
Sco object.
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APPENDIX

ENTROPY IN A FULLY IONIZED GAS

The specific entropy s (erg K−1 g−1) of a mixture of
atoms, ions, and electrons together with radiation is given by
Bisnovatyi-Kogan (2001; note that there is a + symbol missing
after the 5/2 and before the ln in the double summation in the
English version) as follows:

s = k

ρ

∑
i

i∑
j=0

nij

{
5

2
+ ln

[(
mikT

2πh̄2

)3/2
gij

nij

]}

+
k

ρ
ne

{
5

2
+ ln

[(
mekT

2πh̄2

)3/2 2

ne

]}
+

4

3

aT 3

ρ
, (A1)

where xi is the mass fraction of the element, yij is the fraction of
the ith element ionized to the j-state, mi = Aimu = (1g)Ai/NA

is the nuclear mass,

nij = xiρyij /mi (A2)

is the number density of ions,

ne =
∑

i

i∑
j=1

jnij cm−3 (A3)

is the electron number density,

μ =
⎡
⎣∑

i

mu

mi

xi

i∑
j=0

(1 + j ) yij

⎤
⎦

−1

(A4)

is the number of nucleons, mu = 1.66057 × 10−24 g is the
atomic mass unit, NA = (1 g)/mu mol−1 is the Avogadro’s
number, me = 9.10953 × 10−28 g is the mass of the electron,
h̄ = 1.0546 × 10−27 erg s is the Planck constant, k =
1.38064 × 10−16 erg K−1 is the Boltzmann constant, a =
7.565 × 10−15 erg cm−3 K−4 is the radiation density constant,

and c = 2.9979×1010 cm s−1 is the velocity of light in vacuum.
For a fully ionized gas the fraction of the ith element ionized to
the j-state can be written as

yij =
{

1 i = j
0 i �= j

, (A5)

and Ai ≈ 2i. Then, we can get

ne =
∑

i

inii = ρ
∑

i

i
xi

mi

= ρNA

μe

, (A6)

where μe is the mean molecular weight per free electron,

μe ≡
[∑

i

i
xi

Ai

]−1

≈
[
xH +

xHe

2
+

1

2
xA

]−1

; xA =
∑
i�3

xi.

For the case of ions, we can write the total density as follows:

nI = ρ
∑

i

xi

mi

= ρNA

μI

, (A7)

where μI is the ion mean molecular weight,

μI ≡
[∑

i

xi

Ai

]−1

≈
[
xH +

xHe

4
+

1

14
xA

]−1

; xA =
∑
i�3

xi.

Notice that we assume that the average of Ai is about 14. Now,
we can define X = xH, Y = xHe and Z = ∑

xi as the elements
heavier than helium. Therefore,

X + Y + Z = 1, (A8)

and we can rewrite μI and μe as follows:

μI ≈ 28

26X + 5Y + 2
, (A9)

μe ≈ 2

X + 1
. (A10)

Hence,

μ =
(

1

μI

+
1

μe

)−1

= 28

40X + 5Y + 16
. (A11)

Hence, the entropy of the gas can be written as follows, by
substituting Equations (A2) and (A6) into (A1) and expanding
terms,

s = kNA
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NA2πh̄2

)3/2 1

ρNA

]

+ kNA

∑
i

xi

Ai

ln

(
A

5/2
i

xi

)
+

5

2

kNA

μI

+
5

2

kNA

μe

+
4

3

aT 3

ρ

+
kNA

μe

ln

[(
kT

NA2πh̄2

)3/2 1

ρNA

]
+

kNA

μe

ln
[
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,

which has terms in common; thus, the new equation can be
written as

s = kNA
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.
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Hence, we can rearrange the previous equation and get

s = kNA

μ
ln(T 3/2ρ−1) +

4

3

aT 3

ρ
+ s0, (A12)

where
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Therefore, the entropy of the ith particle can be written as
follows:

Si = kNAmi

μ
ln(T 3/2ρ−1) +

4

3

miaT 3
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where

S0,i ≡ mis0,i = kNAmi
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Here we used gii = 1.
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