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ABSTRACT
In this Letter, we investigate the role of recombination energy during a common envelope
event. We confirm that taking this energy into account helps to avoid the formation of the
circumbinary envelope commonly found in previous studies. For the first time, we can model
a complete common envelope event, with a clean compact double white dwarf binary system
formed at the end. The resulting binary orbit is almost perfectly circular. In addition to
considering recombination energy, we also show that between 1/4 and 1/2 of the released
orbital energy is taken away by the ejected material. We apply this new method to the case of
the double white dwarf system WD 1101+364, and we find that the progenitor system at the
start of the common envelope event consisted of an ∼1.5 M� red giant star in an ∼30 d orbit
with a white dwarf companion.
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1 IN T RO D U C T I O N

The formation of a compact binary system composed of two white
dwarfs (WDs) is widely accepted to include a common envelope
event (CEE), at least during the last episode of mass exchange
between the first-formed WD and a low-mass red giant (RG). Low-
mass RGs have a well-defined relation between their core masses
and radii, providing for DWDs the best-defined state of a progenitor
binary system at the onset of the CEE among all known types of
post-common envelope (CE) systems. As a result, DWD systems
have served extensively as test-sites for attempts to understand the
physics of CEEs, using both population synthesis approaches and
hydrodynamical methods.

Previous attempts to model a CEE between a low-mass RG and a
WD did not succeed to eject the entire CE during three-dimensional
(3D) hydrodynamical simulations (for most recent studies, see Passy
et al. 2012; Ricker & Taam 2012). The final state of these simulations
is that a significant fraction of the expanded envelope remains bound
to the formed binary, forming a so-called circumbinary envelope.
Then almost no energy transfer can take place from the binary orbit
to that circumbinary envelope. Observationally, no circumbinary
disc in a post-CE system has been found so far.

It has been proposed long ago that recombination energy of hy-
drogen and helium should play a role during a CEE (Lucy 1967;
Roxburgh 1967; Paczyński & Ziółkowski 1968; Han, Podsiadlowski
& Eggleton 1994; Han et al. 2002). However, until now, this en-
ergy was not yet taken into account in 3D modelling. While the
initially available recombination energy can be easily comparable
to the binding energy of the remaining bound envelope (e.g. Passy
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et al. 2012), the important question is when and where the energy is
released – to be useful, recombination energy should not be released
too early in the CEE nor in material already ejected, but instead in the
circumbinary envelope at a time when the recombination energy is
comparable to the binding energy of the not-yet ejected material. In
this Letter, we investigate if the inclusion of recombination energy
can help to remove the circumbinary envelope. We apply the new
approach to the system WD 1101+364, a well-measured DWD that
has Porb = 0.145 d and a mass ratio of q = M1/M2 = 0.87 ± 0.03,
where M1 � 0.31 M� and M2 � 0.36 M� are the masses of the
younger and older WDs, respectively (Marsh 1995).

2 IN I T I A L S E T-U P A N D D E F I N I T I O N S

We anticipate that the progenitor of WD 1101+364 was a low-mass
RG that had a degenerate core of 0.31 M�. We consider the range
of masses for the RG donor, Md, 1, from 1.0 to 1.8 M�. To evolve
the RG and find the initial one-dimensional (1D) stellar profile, we
use TWIN/STAR stellar code (recent updates described in Glebbeek,
Pols & Hurley 2008). The stars are evolved until their degenerate
He cores have grown close to 0.31 M�.

For 3D simulations, we use STARSMASHER (Gaburov, Lombardi &
Portegies Zwart 2010; Lombardi et al. 2011), a smoothed particle
hydrodynamics (SPH) code. Technical details on using this code
to treat CE events can be found in Nandez, Ivanova & Lombardi
(2014). A 1D stellar profile is imported to STARSMASHER, where an
initial stellar model represented by a certain number of particles Np

is generated via a relaxation process. The core of an RG is modelled
as a point mass – a special particle in SPH that interacts only
gravitationally with other particles. Because the centre of the giant
is not fully resolved, the core mass, Mc, 1, is slightly more than in the
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Table 1. Initial conditions.

Model Md, 1 Menv, 1 Mc, 1 Rrlof aorb, ini Porb, ini Np η Ebind Erec Eorb, ini Etot, ini λ

1.0RG0N 0.985 0.668 0.317 28.21 60.11 46.57 99 955 0.00 −8.454 2.059 −1.118 −7.513 1.047
1.0RG1N 0.985 0.668 0.317 29.78 63.51 50.57 99 955 1.00 −8.454 2.059 −1.058 −7.453 0.992
1.0RG2N 0.985 0.668 0.317 31.35 66.81 54.57 99 955 2.00 −8.454 2.059 −1.006 −7.401 0.942
1.2RG2N 1.195 0.877 0.318 29.48 60.74 44.00 99 955 2.00 −12.328 2.725 −1.345 −10.945 1.093
1.4RG2N 1.397 1.079 0.319 27.73 55.59 36.24 99 955 2.00 −16.947 3.369 −1.715 −15.293 1.217
1.5RG2N 1.498 1.179 0.319 25.66 50.82 30.81 99 955 1.65 −20.636 4.038 −2.015 −18.609 1.267
1.5RG2NP 1.498 1.179 0.318 25.66 50.82 30.81 200 221 1.65 −20.345 3.697 −2.011 −18.659 1.285
1.6RG2N 1.598 1.275 0.323 25.80 50.54 29.76 99 955 2.00 −22.837 4.009 −2.157 −20.985 1.312
1.6RG0S 1.598 1.275 0.323 31.25 48.61 27.97 99 955 0.00 −22.358 3.997 −2.241 −20.602 1.106
1.7RG2N 1.699 1.376 0.323 22.83 44.25 23.78 99 955 2.00 −28.638 4.338 −2.619 −26.918 1.356
1.7RG0S 1.699 1.376 0.323 27.58 42.97 22.67 99 955 0.00 −28.003 4.326 −2.694 −26.371 1.148
1.8RG2N 1.799 1.481 0.318 16.34 31.37 13.86 99 955 2.00 −44.167 4.676 −3.912 −43.404 1.401

Notes. The models names are composed as following: two digits representing the RG mass are followed by ‘RG’, η value is the outermost smoothing
length; then ‘N’ stands for non-synchronized and ‘S’ for synchronized (‘S’) cases. ‘P’ denotes the model with about twice larger number of particles
than in all the other models. Md, 1, Menv, 1 and Mc, 1 are the total, envelope and core mass of the RG, in M�. Rrlof is the radius of the donor Roche
lobe, in R�, and η describes the adopted donor’s radius definition (see Section 2). aorb, ini is the initial orbital separation in R�, Porb, ini is the
initial orbital period in days. Np is the total number of SPH particles that represent the RG. Ebind, Erec, Eorb, ini and Etot, ini are the binding energy
of the RG envelope without recombination energy, the total recombination energy of the RG envelope, initial orbital energy and initial total energy,
defined as the sum of the binding, recombination and initial orbital energies, respectively, in the units of 1046 erg. λ is a star structure parameter
(see equation 3).

1D code (see Table 1 for this and other initial values). This ensures
a proper matching of stellar profiles of 3D envelopes with 1D stellar
profiles. The envelope mass in a 3D star is Menv, 1 = Md, 1 − Mc, 1.

In a 3D star, the radius of the star, RSPH, cannot be defined as
uniquely as the photospheric radius of the 1D star (for a thor-
ough discussion, see Nandez et al. 2014). The stellar radius can
be parametrized as RSPH = Rout + ηhout, where Rout is the position
of the outermost particle and hout is the smoothing length of that
particle. The parameter η can range between 0 (in this case, some
mass will be found above RSPH) to 2 (with all mass contained within
RSPH). In addition, we note that a synchronized giant is expected to
attain a larger radius after relaxation than a non-synchronized giant.

The initial orbital separation, aorb, ini, for the non-synchronized
cases, is found from the assumption that RSPH is equal to the Roche
lobe (RL) overflow radius, Rrlof, and using the approximation by
Eggleton (1983). The initial orbital period, Porb, ini is found assuming
a Keplerian orbit. For the synchronized cases, the orbital period and
separation are found at the moment when the RG overflows its RL
(see section 2.3 of Lombardi et al. 2011).

Equations of state (EOSs). The standard EOS (SEOS) in STARS-
MASHER is analytical and includes radiation pressure and ideal gas
contributions. To take into account recombination energy, we need
another prescription for the EOS. Because we evolve the specific
internal energy ui and density ρ i for each particle (among other
variables), we prefer an EOS that uses ui and ρ i as independent
variables. However, such an analytical expression does not exist in
simple form when we consider recombination/ionization of atoms.
Therefore, we are bound to use a tabulated EOS (TEOS) which uses
ui and ρ i to provide the gas pressure Pgas, i, temperature Ti, specific
entropy si, etc.

We use the MESA-EOS module to calculate such tables (see
section 4.2 of Paxton et al. 2011). The core of an RG is modelled as a
point mass, and the rest of the star has uniform composition. Hence,
only one table with a single set of composition for H, He and metals
needs to be generated for each RG. The tables that we generate
operate in 9.84 ≤ log u[erg g−1] ≤ 19.0 and −14 ≤ log ρ[g cm−3] ≤
3.8. When a particle has a density or specific internal energy outside
the limits of our tables, we switch to the SEOS.

Energy formalism. The energy formalism compares the donor’s
envelope binding energy Ebind with the orbital energy before, Eorb, ini,
and after the CEE, Eorb, fin (Webbink 1984; Livio & Soker 1988):

Ebind = αbind(Eorb,fin − Eorb,ini) ≡ αbind�Eorb. (1)

Here αbind is the fraction of the released orbital energy used to expel
the CE, 0 ≤ αbind ≤ 1. The binding energy of the donor’s envelope,
in its standard definition, is

Ebind =
∑

i

mi

(
φi + 3

2

kTi

μimH
+ aT 4

i

ρi

)
, (2)

where mi, Ti, ρ i, φi and μi are the mass, temperature, density,
specific gravitational potential energy and mean molecular mass,
respectively, for each particle i. The constants k, a and mH are the
Boltzmann constant, radiation constant and hydrogen atom mass,
respectively, while φi is calculated as in Hernquist & Katz (1989).
Note that Ebind in its standard definition does not include recombi-
nation energy.

The binding energy of the donor’s envelope is frequently
parametrized using a parameter λ, defined as (de Kool 1990)

λ ≡ −GMd,1Menv,1

EbindRrlof
. (3)

Here G is the gravitational constant. For low-mass giants, λ is known
to have a value close to one, and we obtain similar results.

We find the orbital energy of the binary system according to

Eorb = 1

2
μ|V12|2 +

∑
i

1

2
miφi −

∑
j

1

2
mjφ

RL1
j −

∑
k

1

2
mkφ

RL2
k ,

(4)

where μ = M1M2/(M1 + M2) is the reduced mass, and V 12 =
V 1 − V 2 is the relative velocity of the two stars. The first term gives
the orbital kinetic energy. The second term is the total gravitational
energy of the binary, with the sum being over all particles i in the
binary. The third and fourth terms correspond to the removal of the
self-gravitational energy of the donor (the sum being over particles
j in star 1) and of the WD (the sum being over particles k in star
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2, initially only the WD), respectively: the remaining gravitational
energy is then just the orbital contribution.

Recombination energy. In our treatment, the internal energy pro-
vided by the TEOS includes contributions from ideal gas, radiation,
and the recombination energy for H, He, C, O, N, Ne and Mg (see
section 4.2 of Paxton et al. 2011). The recombination energy can be
extracted as

Erec =
∑

i

mi

(
ui − 3

2

kTi

μimH
− aT 4

i

ρi

)
≡ αrec�Eorb, (5)

where ui is the SPH specific internal energy of particle i. Values of
Erec, as expected, scale well with the mass of the envelope. Note
that here we introduce important new parameter, αrec – the ratio
between the recombination energy and the released orbital energy.

Total energy. The initial total available energy, Etot, ini, is

Etot,ini = Eorb,ini + Ebind + Erec. (6)

This quantity is conserved during the evolution of all our models.
Bound and unbound material. For each particle, its total energy is

defined as Etot,i ≡ 0.5miv
2
i + miφi + miui , where the first, second

and third terms are the kinetic, potential and internal energies, re-
spectively. If the particle has negative total energy, it is bound to the
binary. In this case, if the particle is located outside of either RL,
the particle is in the circumbinary region. Accordingly, we classify
the particles to be in (i) the ejecta, munb – the particles with positive
energy, (ii) the circumbinary, mcir – the matter bound to the binary
but outside of the two RLs and (iii) binary, mbin – the particles are
inside either of the two RLs.

The total energy of the unbound material at infinity is computed
when the unbound mass is in a steady state after the CEE:

E∞
tot,unb =

∑
i

Eunb
tot,i = −α∞

unb�Eorb. (7)

Here we introduce α∞
unb – the energy taken away by the unbound

material in units of the released orbital energy. Note that in the
standard energy formalism this quantity is always assumed to be
zero.

Angular momentum budget. We calculate the orbital angular mo-
mentum

Jorb ≡ μR12 × V 12, (8)

where R12 = R1 − R2 is the displacement from star 2 to star 1.
We note that the magnitude Jorb = |Jorb, z|, where the z-direction
is perpendicular to the orbital plane. An outcome of a CEE can
be characterized by how much orbital angular momentum is lost.
We provide the γ -parameter (Nelemans et al. 2000; Nelemans &
Tout 2005) as a way of quantifying angular momentum loss in our
simulations:

γ = M1 + M2

Munb

Jorb,ini − Jorb,fin

Jorb,ini
. (9)

3 FO R M AT I O N O F A DW D T H RO U G H A C E E

Comparison between the two EOSs. We compare the results of sim-
ulations with our two different EOSs using the model 1.5RG2N. In
both cases, the initial relaxed stars have SPH profiles that match very
well the 1D stellar profiles for pressure, density and gravitational
potential. However, this is not the case for the specific internal en-
ergy u (see Fig. 1): clearly only the TEOS model matches the desired
1D stellar profile. As expected, the mismatch between the relaxed

Figure 1. Specific internal energy u profiles for the model 1.5RG2N. The
black asterisks and grey triangles correspond to relaxed u profiles for TEOS
and SEOS, respectively. The black solid line corresponds to the u profile
from the stellar code.

profile with SEOS and the stellar one is indeed due to neglecting
recombination energy.

We find that the SEOS fails to unbind the envelope in our CE
simulations. Only about 50 per cent of the envelope becomes un-
bound: the circumbinary matter does not interact with the formed
binary at all, making it impossible to eject the entire envelope. This
result is consistent with the findings of previous studies (Passy et al.
2012; Ricker & Taam 2012). On the other hand, the TEOS simula-
tion clearly makes use of the recombination energy and ejects the
envelope entirely. For all other models presented in the Letter, we
use the TEOS.

Masses. At the end of the simulations, we form a binary consisting
of M1 and M2 (see Table 2 for all the outcomes). The unbound
material Munb is at least 99.8 per cent of the initial envelope. A few,
usually less than 10, SPH gas particles remain bound to the newly
formed binary, been bound to either the newly formed WD, or the
old WD. This explains why M1 can be slightly larger than Mc, 1,
and similarly why M2 can exceed slightly 0.36 M�. There is no
circumbinary envelope left in all simulations with the TEOS. In all
our simulations, the final mass ratio q ranges between 0.88 and 0.90,
consistent with the observational error for WD 1101+364.

Energies. The total energy at the end of the simulation is dis-
tributed in the ‘binding’ energy of the gas bound to the binary,
Ebound, the final orbital energy of the binary, Eorb, fin, and the total
energy of the unbound material at infinity, E∞

tot,unb:

Etot,fin = Eorb,fin + Ebound + E∞
tot,unb. (10)

We have compared the initial and the final total energies and found
that the error is less than 0.11 per cent in all our simulations.

E∞
tot,unb is composed of E∞

kin,unb, E∞
int,unb, E∞

pot,unb – the kinetic,
internal and potential energies of the unbound material, respectively.
We note that E∞

kin,unb is the dominant energy in the unbound material,
though the internal energy of the unbound material at the end of the
simulations is also non-negligible (see Table 2).
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Table 2. Energies and masses.

Model Munb M1 M2 E∞
kin,unb E∞

int,unb E∞
pot,unb E∞

tot,unb Eorb, fin Ebound Etot, fin �Eorb

1.0RG0N 0.663 0.322 0.360 3.645 0.473 −0.025 4.093 −10.992 −0.615 − 7.514 − 9.874
1.0RG1N 0.663 0.322 0.360 4.123 0.295 −0.015 4.403 −11.278 −0.582 − 7.457 − 10.220
1.0RG2N 0.663 0.322 0.360 4.081 0.543 −0.024 4.600 −11.469 −0.531 − 7.400 − 10.490
1.2RG2N 0.872 0.323 0.360 4.604 0.629 −0.041 5.192 −15.504 −0.639 − 10.951 − 14.159
1.4RG2N 1.079 0.319 0.360 6.790 0.907 −0.094 7.603 −22.911 −0.005 − 15.313 − 21.196
1.5RG2N 1.178 0.319 0.361 6.089 0.917 −0.096 6.910 −25.484 −0.026 − 18.600 − 23.469
1.5RG2NP 1.178 0.320 0.360 7.415 1.407 −0.159 8.663 −26.969 −0.366 − 18.665 − 24.958
1.6RG2N 1.274 0.323 0.362 5.623 1.812 −0.440 6.995 −27.741 −0.244 − 20.990 − 25.584
1.6RG0S 1.274 0.323 0.362 5.603 1.692 −0.381 6.914 −27.228 −0.309 − 20.623 − 24.987
1.7RG2N 1.370 0.323 0.366 5.854 2.042 −0.417 7.479 −33.692 −0.715 − 26.928 − 31.073
1.7RG0S 1.373 0.323 0.363 5.032 2.061 −0.610 6.483 −32.417 −0.466 − 26.400 − 29.723
1.8RG2N 1.478 0.318 0.362 8.333 1.675 −0.371 9.637 −52.873 −0.171 − 43.407 − 48.961

Notes. Munb, M1, and M2 are the unbound, stripped RG core and old WD, in M�. E∞
kin,unb = ∑

i munb
i v2

i /2, E∞
int,unb = ∑

i munb
i ui ,

E∞
pot,unb = ∑

i munb
i φi and E∞

tot,unb are kinetic, internal, potential and total energies, respectively, for the unbound material. Eorb, fin is the
orbital energy after the CEE. Ebound is the total energy of the particles that remained bound to the binary. Etot, fin is the total energy of all
the particles. All energies are in 1046 erg.

Table 3. Orbital parameters.

Model Jorb, ini Jorb, fin γ rp ra aorb, fin Porb, fin e αbind αrec α∞
unb

1.0RG0N 14.340 1.188 1.861 2.015 2.115 2.065 0.416 0.024 0.855 −0.208 0.431
1.0RG1N 14.741 1.168 1.868 1.965 2.074 2.020 0.403 0.027 0.827 −0.201 0.431
1.0RG2N 15.119 1.157 1.873 1.947 2.036 2.000 0.397 0.022 0.808 −0.197 0.440
1.2RG2N 16.262 0.987 1.670 1.520 1.532 1.526 0.264 0.004 0.871 −0.192 0.367
1.4RG2N 17.116 0.759 1.557 1.070 1.089 1.080 0.158 0.009 0.800 −0.159 0.359
1.5RG2N 17.062 0.709 1.512 0.953 1.003 0.978 0.134 0.026 0.879 −0.172 0.294
1.5RG2NP 17.062 0.719 1.511 0.891 0.924 0.908 0.122 0.018 0.815 −0.148 0.347
1.6RG2N 17.685 0.678 1.479 0.880 0.948 0.914 0.122 0.037 0.893 −0.157 0.273
1.6RG0S 17.392 0.690 1.477 0.912 0.947 0.930 0.126 0.019 0.895 −0.160 0.277
1.7RG2N 17.151 0.610 1.449 0.746 0.771 0.758 0.092 0.016 0.922 −0.140 0.241
1.7RG0S 16.953 0.624 1.444 0.776 0.791 0.784 0.097 0.009 0.942 −0.146 0.218
1.8RG2N 14.932 0.446 1.417 0.464 0.493 0.479 0.047 0.030 0.902 −0.096 0.197

Notes. The orbital angular momentum Jorb, ini and Jorb, fin for the initial and final binary, respectively, in units of
1052 g cm2 s−1. The parameter γ is defined in equation (9). The closest and farthest orbital separations are rp and
ra, respectively, while aorb, fin is the semimajor axis (all in R�). The orbital period Porb, fin is given in days, and e is
the eccentricity of the orbit. The energy fractions αbind, αrec, and α∞

unb are defined in equation (1), equations (5) and (7),
respectively.

We present Ebound for completeness, but the fate – accretion or
ejection – of the several particles that remain bound to the binary
cannot be resolved by the numerical method we use; on the time-
scale of our simulation they stay in an orbit within the RL of their
stars. This energy includes the kinetic, internal, potential and re-
combination energies for these several SPH gas.

We should clarify that Eorb, fin does not have to match with the
two-body approximation, namely Eorb = −GM1M2/(2aorb). In the
latter, the potential assumes a form φ ∝ 1/r, while our code includes
the softened form as described in the appendix of Hernquist & Katz
(1989). When the separation between the two SPH special particles
is more than two smoothing lengths, the potential reduces to the Ke-
plerian form. However, this separation is less than two smoothing
lengths for the point particles after the CEE, and the potential is soft-
ened accordingly. The difference in orbital energy between the two
methods varies from about 3 per cent (for 1.0RG0N) to 14 per cent
(for 1.8RG2N), with the Keplerian values being closer to zero. The
initial orbital energy, given by equation (4), is the same as in the
two-body approximation.

Because energy is well conserved, we can equate equations (6)
and (10). For that, we also use equations (1), (5) and (7). If we ne-

glect Ebound, we can re-write the conservation of energy in fractions
of the change in the orbital energy:

αbind + αrec + α∞
unb ≈ 1. (11)

We find that this is indeed the case in our simulations (see Table 3),
and that the deviation from 1 is due to Ebound: the maximum deviation
occurs in 1.0RG0N (∼7.8 per cent) and the minimum in 1.4RG2N
(∼0.03 per cent). Note that if αrec = α∞

unb = 0, the previous equa-
tion reduces to the standard energy formalism. However, values of
both αrec and α∞

unb are non-negligible and comparable to αbind. We
emphasize that previously it had been anticipated only that αbind is
somewhat less than 1, and we provide new improved constraints.
Unfortunately, this is not yet a final solution of the problem as α∞

unb
cannot be easily predicted for any system – a subject of our future
studies.

Orbital angular momenta. We find that the ejected material takes
away more than 90 per cent of the initial angular momentum of the
binary. Values of γ vary between 1.42 and 1.87. This large range of
values unfortunately does not allow the obtained values of γ to be
useful for predicting the final parameters in a population synthesis
for all possible DWD systems (for details, see Ivanova et al. 2013).
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Figure 2. Final orbital periods versus initial mass of an RG. Triangles
represent non-synchronized RGs, and circles represent synchronized RGs.
Note: to compare alike cases, we show only the η = 2 cases with our standard
resolution. Different η’s give similar outcomes (see Table 3).

Final orbital parameters. We find the final orbital separation
as aorb, fin = (ra + rp)/2, where rp is the periastron and ra is the
apastron. We ensure that these two quantities, rp and ra, do not
change with time at the moment when we extract them from the
simulations. We calculate the final orbital period Porb, fin of the binary
from Kepler’s third law and the eccentricity of the post-CE orbit as
e = (ra − rp)/(2aorb, fin). The latter is small in all the models, showing
that post-CE orbits are almost circular (in previous studies, where
the ejection of the CE was incomplete, the final eccentricity was
larger, 0.08 or more, e.g. Ricker & Taam 2012).

Fig. 2 shows the final orbital periods plotted versus initial RG.
We see that, as expected, the more massive the star is, the tighter
the orbit gets. We find also that the final orbital period for the non-
synchronized and synchronized cases are very similar (for the final
state of the binary system, the only change due to synchronization
was observed for the final eccentricity, albeit final eccentricity is
small in all the cases). We conclude that our best progenitor for
WD 1101+364 is a 1.4–1.5 M� RG.

4 C O N C L U S I O N S

To understand the energy budget during a CEE leading to a DWD
formation, we perform non- and synchronized 3D hydrodynamic
simulations with two EOSs. We confirm that taking into account
recombination energy leads to a full ejection of the RG’s envelope
and the formation of a non-eccentric binary system, whilst if we do
not take recombination energy into account, we obtain result similar
to previous studies and only half of the RG’s envelope is ejected.
The most important consideration appears not to be the value of the
available recombination energy, but where and when this energy is
released. Indeed, ionized material forms the circumbinary envelope
initially. Recombination then takes places there, while the circumbi-
nary envelope continues to expand. This results in the ejection of
the circumbinary envelope and effectively of all the CE material. If
instead the recombination energy had been released too early, the

simulations would have ended up with unexpelled circumbinary en-
velope as in previous studies. In addition, we find that considering
a complete synchronization versus non-synchronized case does not
change noticeably the final results.

We introduce a modification of the standard energy formalism
(Webbink 1984; Livio & Soker 1988), with the parameters describ-
ing the use of the recombination energy and the unbound material
energy. The first one can be found from initial stellar models, but
the latter requires 3D simulations. For our set of models, α∞

unb has
values from about 0.2 to about 0.44. However, to generalize the re-
sult and make it useful for population synthesis one needs to make
a thorough parameter study; this is the subject of our future studies.

As expected, we find that the more massive the parent RG star
is, the tighter the final orbit gets. We do not find that the initial
synchronization affects the final period but instead only changes
the energy and angular momentum carried away by the ejecta, pre-
sumably shaping the post-CE nebula. We also find that our binaries
end up with an eccentricity smaller than 0.04 – a result that has been
expected theoretically but not yet produced in simulations.

We applied our method to the case of WD 1101+364, a well-
known DWD (see Marsh 1995). We inferred that its progenitor bi-
nary could have been composed of a 1.4–1.5 M� RG and a 0.36 M�
WD companion, with Porb, ini ≈ 31–33 d.
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