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ABSTRACT

We use three-dimensional hydrodynamical simulations to study the rapid infall phase of the common envelope (CE)
interaction of a red giant branch star of mass equal to 0.88 M� and a companion star of mass ranging from 0.9 down
to 0.1 M�. We first compare the results obtained using two different numerical techniques with different resolutions,
and find very good agreement overall. We then compare the outcomes of those simulations with observed systems
thought to have gone through a CE. The simulations fail to reproduce those systems in the sense that most of
the envelope of the donor remains bound at the end of the simulations and the final orbital separations between
the donor’s remnant and the companion, ranging from 26.8 down to 5.9 R�, are larger than the ones observed. We
suggest that this discrepancy vouches for recombination playing an essential role in the ejection of the envelope
and/or significant shrinkage of the orbit happening in the subsequent phase.
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1. INTRODUCTION

Around 60% of F and G stars are binaries, of which about
30% have separations smaller than 30 AU and will interact
during the primary’s evolution (Duquennoy & Mayor 1991).
During the giant phases of the primary, companions closer than
∼5 AU enter a strong interaction phase with the primary and,
under certain circumstances, a common envelope (CE) may
form around the two stars. The secondary star spirals inside the
envelope of the primary and may also fill its own Roche lobe
because it cannot accrete all the matter coming from the donor
star. This process is called a CE interaction and was originally
described by Paczynski (1976). For a general review of the topic
see, e.g., Iben & Livio (1993). There are two different processes
leading to the onset of a CE phase: the start of unstable mass
transfer from the expanding primary to the secondary (Hjellming
& Webbink 1987; Hurley et al. 2002) and the development of
a tidal instability that occurs if there is not enough angular
momentum in the orbit to maintain the primary’s envelope in
synchronization (Darwin 1879). The post-CE system will be
either a compact binary system, if there is enough energy to
eject the primary’s envelope, or a merger, if not.

The CE interaction is an essential ingredient for any binary
population synthesis study of intermediate (e.g., Politano et al.
2010) or massive stars (e.g., Belczynski et al. 2008). Compact
binaries are believed to be formed through at least one CE
phase. Among them are symbiotic binaries, supersoft X-ray
sources, cataclysmic variables, and double white dwarfs, which
are all possible supernova Type Ia progenitors. As Meng et al.
(2011) pointed out, results deduced from population synthesis
studies such as the Type Ia supernova birth rate are highly
dependent on the physics of the CE phase. Therefore, it is
paramount to understand more accurately the CE interaction
in order to identify the formation channels of such supernovae

and to compare observations with predictive models. Moreover,
many substellar companions to evolved stars have recently
been discovered with small orbital separation. Maxted et al.
(2006) found a brown dwarf orbiting a white dwarf with a
116 minute period, while Setiawan et al. (2010) discovered a
system composed of a Jupiter-like object orbiting a horizontal
branch star with a 16.2 day period. We therefore know that
substellar companions can survive a CE interaction, but what is
the minimum mass of the companion that can eject the envelope?
Is the ejected envelope entirely unbound or will some of it
eventually fall back and form a circumbinary disk? Were the
substellar companions present before and survived the CE or
were they formed later on in such a disk (Perets 2011)? Those
questions remain unanswered.

Although the CE process was outlined more than 30 years
ago, it is still far from understood quantitatively. Numerical
simulations suggest that the typical duration of the entire CE
phase is short—less than 103 years—which makes CE ejections
unlikely to be observed. However, one can use observations of
post-CE binaries to better understand CE evolution. With the
use of stellar models, the initial configuration of such systems
can be approximately determined from the final configuration.
Using either the α-formalism (Webbink 1984, but see De Marco
et al. 2011) or the γ -formalism (Nelemans et al. 2000) the
relevant parameters can be constrained and the CE ejection
efficiency can be predicted. Using this approach, De Marco
et al. (2011) suggested an anti-correlation between α, the CE
efficiency parameter, and the secondary to primary mass ratio.

The entire CE evolution can be divided into three different
phases (Podsiadlowski 2001) with different timescales, length
scales, and physics involved. These differences are the reasons
why reproducing the entire CE evolution of a given system
accurately is challenging. Therefore, one usually treats one
phase after the other with different methods. In this paper,
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we focus only on the rapid infall phase, which has a short
timescale (∼1–10 years), and in which the evolution is driven by
drag forces. Several numerical hydrodynamic studies of the CE
interaction have been carried out in the past (for an exhaustive
list, see Taam & Sandquist 2000), including a series of 10 papers
starting with the two-dimensional calculation of the interaction
of a 16 M� supergiant and a 1 M� neutron star (Bodenheimer
& Taam 1984), and most recently treating three-dimensional
simulations of the CE interaction between 3 or 5 M� giant stars
and 0.4 or 0.6 M� main-sequence (MS) companions (Sandquist
et al. 1998). The latter study has been extended first by Sandquist
et al. (2000) to 1 M� and 2 M� red giant branch (RGB) stars
with companion masses ranging from 0.1 to 0.45 M�, then by De
Marco et al. (2003) to a 1 M� asymptotic giant branch star with
a 0.1 or 0.2 M� companion. Ricker & Taam (2008) computed
high-resolution simulations of the CE phase between a 1.05 M�
RGB star and a 0.6 M� compact companion, and concluded
that the gravitational component of the drag dominates over
the hydrodynamical component (also see Taam & Ricker 2010;
Ricker & Taam 2011).

A direct comparison of the results obtained using different nu-
merical methods has however never been carried out. Although
analytical/empirical work has included discussion regarding ob-
servational data, there are only a couple of publications that
connect simulations and observations in a meaningful way (see,
e.g., Sandquist et al. 2000). Those are, as we will explain in
Sections 2 and 4, key steps to better understand the implications
of CE interactions and the physical processes driving them. In
this paper we therefore present numerical simulations with two
different algorithms of the CE interaction of a 0.88 M� RGB
star with an MS companion. Different companion masses from
0.1 M� to 0.9 M� are considered. The simulations are carried
out with both an Eulerian code (Enzo in uniform-grid mode;
O’Shea et al. 2004 and enzo.googlecode.com) and a Lagrangian
code (SNSPH; Fryer et al. 2006), and for different resolutions.
We describe the numerical methods and the initial conditions
of our 15 simulations in Sections 2 and 3. We describe and dis-
cuss the results in Sections 4 and 5, and finally conclude and
summarize in Section 6.

2. DESCRIPTION OF CODES

In this section we describe the numerical methods we use. We
first compare the code algorithms and explain why a code-to-
code comparison is necessary. Then, we describe both codes in
detail and finally discuss different ways to compare resolution.

2.1. Eulerian versus Lagrangian Codes

Although they are meant to simulate similar astrophysi-
cal situations, high-order Eulerian grid codes and Lagrangian
smoothed-particle hydrodynamics (SPH) codes differ funda-
mentally, with each having advantages and disadvantages.
Among other studies, Davies et al. (1993), Frenk et al. (1999),
Agertz et al. (2007), Tasker et al. (2008), and Heitsch et al.
(2011) aim at identifying these differences. On the one hand,
high-order Eulerian grid codes have a better wavenumber reso-
lution than SPH codes for an equal number of cells and particles
and are more accurate at resolving the rarefied regions since,
unlike SPH, the resolution does not depend on the density of
the gas; Eulerian codes also better resolve shocks (Tasker et al.
2008) compared to SPH codes; and finally, SPH noise dominates
subsonic flows and therefore makes it difficult for SPH codes to
follow perturbations in flows with Mach numbers below unity.

On the other hand, SPH codes do not diffuse material prop-
erties, and inherently conserve mass, momentum, and energy
(Rosswog 2009). While the treatment of boundary conditions
can be challenging in grid-based codes when the flow expands
beyond the computational domain, SPH easily handles vacuum
conditions. It is still unclear which method is the most appropri-
ate to simulate CE interactions. Therefore, we use both methods
and confront the results from both codes in order to draw con-
clusions about their physical relevance.

2.2. Input Physics

Both codes solve the fully compressible hydrodynamics
equations with self-gravity included. These equations can be
written using an Eulerian formulation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p − ∇Φ (2)

∂u

∂t
+ v · ∇u = − 1

ρ
∇ · (pv) − v · ∇Φ (3)

uint = 1

γ − 1

p

ρ
(4)

ΔΦ = 4πGρ, (5)

where ρ, v, p, Φ, u, uint, and γ are the density, velocity, pres-
sure, gravitational potential, specific total energy, specific inter-
nal energy, and adiabatic index of the gas, respectively. The total
energy is the sum of the internal energy and the macroscopic
kinetic energy:

u = uint + v2/2. (6)

Equations (1), (2), and (3) express mass continuity, conservation
of momentum, and conservation of energy, respectively. Both
codes evolve the internal energy rather than the total energy. An
ideal gas equation of state (Equation (4)) for a monoatomic gas
(γ = 5/3) closes the system composed by Equations (1)–(3).
Such an equation of state represents an adequate approximation
of the deep convective envelope of RGB stars (Hjellming &
Webbink 1987) although it ignores some physical processes
such as radiation pressure and ionization. We discuss this point
in detail in Section 5.2.2. Finally, the gravitational potential is
calculated using the Poisson equation (Equation (5)).

2.3. The Enzo Code

Enzo is a three-dimensional, adaptive mesh refinement hybrid
(hydrodynamics + N-body) grid-based code (Bryan et al. 1995;
O’Shea et al. 2004) that we use in uniform-grid mode only. It is
primarily designed to simulate cosmological structure formation
(Norman et al. 2007). However, its numerous features make it
useful for reproducing many different astrophysical situations,
including CE interactions.

The Euler equations (Equations (1)–(3)) are solved using the
van Leer (1977) second-order advection method also imple-
mented in Zeus (Stone & Norman 1992). Although those equa-
tions can also be solved in Enzo by a third-order piecewise
parabolic method that resolves shocks and turbulence better,
our tests show that it slows down the computation by a factor of
two. As we will point out in Section 4, there are neither strong
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Figure 1. Comparison between the different potentials in arbitrary units with hi = εδ = 1. Plotted are the theoretical potential (solid line), the Ruffert (1993) potential
used in Enzo (dashed line), and the Monaghan (1992) one used in SNSPH (dash-cross line).

shocks nor important turbulence in our simulations so we favor
efficiency and use the van Leer solver. The Poisson equation is
solved using fast-Fourier transforms.

In the case of a CE interaction between an RGB star and an MS
companion, the radius of the secondary—typically 0.5 R�—is
small compared to the primary’s radius (∼100 R�), so we can
legitimately model the companion as a point mass particle.
Furthermore, as shown in Figure 3, the primary’s core is also
small (∼0.01 R�) and dense, so it can also be modeled as a point
mass.

Enzo usually models collisionless particles as a continuous
mass field appropriate for computing the gravitational potential
in the case where each particle represents many actual particles,
such as in cosmological simulations with dark matter. In that
case their mass is deposited in the eight nearest cells and added
to the gas density of those cells to find the total density for
use in solving the Poisson equation (Equation (5)). In a simple
two-body interaction between 1 M� and 0.1 M� objects in a 1
year circular orbit without gas, this method does not provide
the accuracy required by our problem because of the spreading
out of the mass of the point source, leading to an inaccurate
gravitational potential. Indeed, a 1% error in the orbit is reached
after only six orbits. Consequently, we implemented, as a new
type of particle, point mass particles. These particles create a
potential that is added analytically to the gas potential calculated
using the Poisson equation. Using an analytic potential yields
an accuracy of the orbit more than two orders of magnitude
better than with the default particles. The gravitational potential
created by a point mass particle is smoothed according to the
prescription of Ruffert (1993), used in Sandquist et al. (1998):

ΦPM(r) = −GMPM√
r2 + ε2δ2 exp [−r2/(εδ)2]

, (7)

where MPM is the mass of the particle, r is the distance from
the particle, δ is the size of a cell, and ε = 1.5. The point mass
particles are advanced using a leapfrog algorithm. Time stepping
is determined by taking the minimum time step between the
Courant conditions for the gas, the particles, and the acceleration
field:

δtgas = min
cells

(
C1δ

cs + max(|vx |, |vy |, |vz|)
)

, (8)

δtpart = min
particles

(
C2δ

max(|Vx |, |Vy |, |Vz|)
)

, (9)

δtaccel = min
cells

(√
δ

max(|gx |, |gy |, |gz|)

)
, (10)

where C1 = 0.4 is the Courant factor, C2 = 0.4 is the particle
Courant factor, cs is the sound speed, v = (vx, vy, vz) is the
velocity of the gas, V = (Vx, Vy, Vz) is the velocity of a particle,
and g = (gx, gy, gz) is the acceleration field.

Finally, we remark that the current Enzo Poisson solver
prevented us from using nested or adaptive grids that would
have allowed us to increase resolution locally. The inaccurate
treatment of boundary conditions within the refined grids
prevented us from stabilizing the RGB progenitor in a multi-
grid initial setup. We are currently developing a new Poisson
solver that will allow us to use nested grids as well as adaptive
mesh refinement and carry out better-resolved simulations.

2.4. The SNSPH Code

SNSPH (Fryer et al. 2006) is a three-dimensional, parallel
SPH code using tree gravity. It uses a regular Monaghan cubic
spline kernel (Monaghan 1992). For the artificial viscosity
we use the sum of a bulk viscosity and a von Neumann
and Richtmyer viscosity (Rosswog 2009). The particles are
organized into a parallel hashed oct-tree as described in Warren
& Salmon (1993). The gravitational potential of an SPH particle,
i, is smoothed using the following formula:

Φi(xi = ri/hi)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Gmi/hi × (
2
3x3

i − 3
10x4

i + 1
10x5

i − 1.4
)

if 0 � x � 1

−Gmi/ri × [(
4
3x2

i − x3
i + 3

10x4
i

− 1
30x5

i − 1.6
)/

hi + 1/15ri

]
if 1 � x � 2

−Gmi/ri otherwise

,

(11)

where hi, mi, and ri are the smoothing length, the particle mass,
and the distance from the particle, respectively. We compare
both numerical potentials to the theoretical potential in Figure 1.
For a given smoothing length, hi, the Monaghan (1992) potential
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Figure 2. Resolution comparison between the SNSPH smoothing length field (dots) for a run with 500,000 particles, and the Enzo size of a grid cell for the 1283 (dash
line) and the 2563 (solid line) runs for the initial (left) and final (right) particle distributions.

used in our SNSPH simulations is deeper than the Ruffert (1993)
one used in our Enzo simulations. Also, the Monaghan (1992)
potential is exact at distances larger than 2hi whereas the Ruffert
(1993) potential only asymptotically tends to the exact potential.

SNSPH uses the fast multipole method to calculate gravita-
tional accelerations (Warren & Salmon 1993). The SPH particles
are also advanced using a leapfrog algorithm. Finally, in order
to keep the same overall spatial coverage, the smoothing length
varies according to the formula from Benz (1989):

hi(t)

hi(0)
=

(
ρi(0)

ρi(t)

)1/3

. (12)

2.5. Resolution Comparison

There is no ideal way to compare the resolution between SPH
and uniform-grid codes. However, a few criteria can give us a
general idea of how to relate them.

As mentioned by Davies et al. (1993), a first global criterion
would be to compare the total number of SPH particles Npart
with the total number of cells originally inside the progenitor:

Ncells = V1

VG

× Ntot ∼ 4.19 ×
(

R1

L

)3

Ntot, (13)

where Ntot, V1, VG, R1, and L are the total number of cells, the
volume of the primary, the volume of the grid, the radius of the
primary, and the linear dimension of the grid, respectively. As
time goes by, the gas will however fill a larger fraction of the
numerical grid and thus increase the number of relevant cells,
but not the real resolution of the simulation.

A more local criterion is to compare the size of an Enzo grid
cell, δ, with the SPH smoothing length, which varies in space
and time. Indeed, if the companion does not sink much into the
primary’s envelope and does not modify the inner part of the
smoothing length distribution too much, then the resolution deep
inside the progenitor does not matter. Therefore, we compare the
smoothing length distribution of the SPH model to the cell size of

the Eulerian grid. As shown in Figure 2, the smoothing length at
small radii does not vary, so an Enzo run with a 1283 grid will be
underresolved compared to our canonical 500,000 (roughly 803)
particle SPH run no matter how deep the companion penetrates
while a run with a 2563 grid would be equivalent to our SPH runs
if the separation between the primary core and the companion
always exceeds 20 R�. This local criterion for the resolution is
not perfect either since it does not take into account the variation
of the smoothing length throughout the SPH simulation.

Again, comparing the resolution between uniform-grid and
SPH codes is quite challenging and both methods have, in the
situation we are interested in, strengths and weaknesses: SPH
will underresolve the low-density outer parts of the envelope,
where the smoothing length dramatically increases, while it will
be more accurate in the later phase of the evolution when the
separation between the primary’s core and the secondary will
typically sink below a few cells. Therefore, comparing SPH
and grid-based simulations is paramount in order to state which
one is more adapted to our problem, and the combination of
both global and local criteria is the best way to compare the
resolutions of both methods.

3. THE SIMULATIONS

We perform 5 SNSPH and 12 Enzo simulations of CE
interactions with a 0.88 M� RGB primary that are summarized
in Table 1. The SNSPH simulations are computed using 500,000
particles whose initial smoothing length follows the radial
profile shown in Figure 2. The Enzo simulations are performed
using either a 1283 or a 2563 grid. In both cases, the linear size
of the computational domain is L = 3 × 1013 cm. We consider
companion masses of 0.9, 0.6, 0.3, 0.15, and 0.1 M�. Giant stars
are slow rotators with rotational velocities of the order of a few
km s−1 (de Medeiros & Mayor 1999). Although it is expected
that a close companion will, through the action of tides and the
transport of angular momentum in the primary envelope, spin
up the envelope during the pre-CE phase, the actual rotation
of the primary at the onset of the CE interaction is hard to
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Table 1
Main Parameters for the Different Simulations

Name Npart or Ncells M2 A0 P0 v0/vcirc Af Pf

(M�) (R�) (days) (R�) (days)

SPH1 500000 0.9 83 66 1 26.8 13.5
SPH2 500000 0.6 83 72 1 20.6 10.1
SPH3 500000 0.3 83 81 1 11.3 5.5
SPH4 500000 0.15 83 86 1 7.3 3.0
SPH5 500000 0.1 83 88 1 6.1 2.2

Enzo1 1283 0.9 91 75 1 28.1 15.5
Enzo2 1283 0.6 91 83 1 20.0 11.0
Enzo3 1283 0.3 91 93 1 11.7 5.6
Enzo4 1283 0.15 91 99 1 8.6 3.4
Enzo5 1283 0.1 91 102 1 8.5 3.3

Enzo6 2563 0.9 85 68 1 25.5 13.2
Enzo7 2563 0.6 85 75 1 19.2 9.8
Enzo8 2563 0.3 85 84 1 11.2 5.4
Enzo9 2563 0.15 85 89 1 6.9 2.8
Enzo10 2563 0.1 85 92 1 5.7 2.1

Enzo11 1283 0.3 91 93 1.05 12.0 4.6
Enzo12 1283 0.3 95.5 99 1 12.2 5.0

Note. Reported are the number of particles (Npart) or cells (Ncells), the companion mass, the initial orbital separation (A0),
the initial orbital period (P0), the ratio of the initial orbital velocity of the companion (v0) to the velocity required for a
circular orbit (vcirc), and the final orbital separation (Af ) taken at the end of the rapid infall phase (Section 4.1).

quantify. Moreover, even if the primary was uniformly rotating
at 50 km s−1, its rotational energy would be

Erot = 1

2
rgM1R

2
1ω

2 ∼ 2.2 × 1044 erg, (14)

where ω, rg, M1, and R1 are the angular velocity, the radius of
gyration, the mass, and the radius of the primary, respectively.
For RGB stars rg is typically about 0.1 (Taam & Sandquist
2000). This rotational energy does not affect the energetics of the
system since it is more than two orders of magnitude smaller than
the binding energy of the primary (see below). Consequently,
we assume that the primary is initially non-rotating. Finally, the
companion is at the start placed at the surface of the primary
in a circular orbit. We thus have three different simulations for
each initial companion mass—one with SNSPH, and two with
Enzo on 1283 and 2563 grids. Additionally, we also run two
Enzo simulations in order to study the dependency of the final
parameters on the initial conditions. We consider the 1283 Enzo
simulation with a 0.3 M� companion (Enzo3) as the reference
and run identical simulations increasing, by 5%, either the initial
velocity of the companion (Enzo11) or the initial separation
(Enzo12). All the runs follow the evolution of the system for
about 1000 days.

As a primary, we use a one-dimensional model of a star
with an MS mass of 1 M�. Using the stellar evolution code
EVOL (Herwig 2000), this progenitor was evolved to the
RGB phase until the core reached Mc = 0.392 M�. At that
time, the radius of the star was 83 R� and its total mass was
M1 = 0.88 M� due to mass loss, which was treated using the
Reimers formalism with η = 0.5. We adapt this model by using
the density and pressure profiles, but computing the internal
energy using Equation (4). A sample of relevant profiles are
plotted in Figure 3.

We now explain how this stellar model is modified in order
to be compatible with an input suitable for each of our codes.
For the SNSPH simulations, the initial particle configuration is
a weighted Voronoi tessellation (WVT) similar to that described

by Diehl & Statler (2006). As we have explained in Section 2.1
one limitation of SPH codes is the large number of particles
required by dense regions such as the core of the primary.
Since the time step induced by a particle i can be roughly
estimated by hi/cs,i where cs,i is the local sound speed, a small
smoothing length will require a small time step resulting in a
high computational cost. Since the equation of state changes
significantly around the helium core, we represent the core by
a particle with mass Mc. The associated smoothing length is
hc = 0.1 R�. We add SPH particles in the region around the
core such that the density values and gradient profiles connect
smoothly at the core/envelope boundary (r = 2hc = 0.2 R�).
In this way, we obtain the profile shown in Figure 3. Since
the density profile has been changed, one must modify the
gravitational acceleration accordingly. Assuming hydrostatic
equilibrium in spherical symmetry, we integrate the pressure
gradient choosing the integration constant to match the true
profile outside the core (at r = 0.2 R�). The specific energy
profile is computed using Equation (4). Finally, the acceleration
of an SPH particle is due either to gravity or to gas pressure.
These two components are computed using the same particle
mass for all particles except the core and the companion, for
which we distinguish between the gravitational and SPH masses.
The gravitational mass of the core is Mc and its SPH mass is
set to balance the gravitational acceleration of the envelope and
prevent the star from collapsing. As for the companion, we treat
it as an N-body particle so its SPH mass is 0 M�.

For the Enzo simulations, the grid is initialized using the
stellar model of the primary with the addition of a PM particle
that represents its core. We fill the computational domain
with a constant background density to prevent the star from
expanding and set the ratio between the background density
and the minimum density of a cell that belongs to the primary
to 10−4. This setup is not initially numerically stable. The star
tends to expand, so we let the initial configuration evolve for
a few dynamical times in the absence of the companion, while
damping the velocity field by a factor of two after each cycle.
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Figure 3. Comparison between the EVOL stellar evolution model (blue), the SPH initial model computed with 500,000 particles (black), and the Enzo initial models
for a 1283 (green) and a 2563 (purple) unigrid. The vertical line represents the core–envelope boundary according to the criterion of De Marco et al. (2011).

(A color version of this figure is available in the online journal.)

Finally, we evolve this relaxed model normally for another few
dynamical times to obtain a numerically stable model. As a
side effect of the relaxation to hydrostatic equilibrium, the Enzo
models are a little bit bigger—the lower the resolution, the larger
the radius of the primary is—thus the initial orbital separations
between the models are slightly different (Table 1).

4. RESULTS

In this section, we describe the results obtained from our 15
simulations. Since the qualitative behavior is the same in all of
them, we detail the 0.6 M� case (SPH2, Enzo2, and Enzo7).

4.1. Description of the Rapid Infall Phase

As explained in Section 3, the companion is placed at the
surface of the primary. Thus, the primary extends beyond its
Roche lobe and unstable mass transfer starts immediately. The
companion, surrounded by stellar matter, exchanges momentum
and energy with this gas through drag. The orbital separation
shrinks on a dynamical timescale and its evolution for the 2563

Enzo simulations is shown in Figure 4. Although the orbit is

initially circular, it quickly develops eccentricity due to the
geometry of the gas ejection. In order to define quantitatively the
end of the rapid infall phase and the final orbital separation ad
hoc, we consider the evolution of the orbital decay (Figure 5). As
expected, the orbital decay is initially quite high (∼0.01 day−1),
decreases as less gas is available for the companion to exchange
energy with, and eventually reaches a plateau. We decide to
define the end of the rapid infall phase to be at the start of
this plateau, which occurs at about 280 days for the 0.6 M�
companion (Figure 5). All the simulations show the same trend
and the lighter the companion, the deeper it falls, and the longer
it needs to reach its final orbital separation. The duration of the
rapid infall phase is 260, 280, 280, 300, and 340 days, for the
0.9, 0.6, 0.3, 0.15, and 0.1 M� companion, respectively.

As orbital energy is transferred to the envelope, the latter is
ejected, initially in the orbital plane; at later phases there is an
almost equal distribution of matter into the polar direction as
well (Figure 6). Overall, almost 90% of the envelope is ejected
within an angle of 30◦ on each side of the equatorial plane. We
compare the orbital velocity of the companion (Figure 7) with
the local sound speed of the gas (Figure 3, bottom left panel).
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Figure 4. Separation between the primary core and the companion as a function of time for the 2563 Enzo simulations. The companion masses are 0.9 (blue), 0.6
(green), 0.3 (red), 0.15 (cyan), and 0.1 (purple) M�.

(A color version of this figure is available in the online journal.)
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Figure 5. Evolution of the separation (top) and of the orbital decay (bottom) for Enzo7. The orbital decay is computed using orbital separations averaged over each
cycle (red dashed line). The blue vertical line shows the time when we define the end of the rapid infall phase.

(A color version of this figure is available in the online journal.)

The former does not exceed 50 km s−1 while the highest sound
speed encountered is about 60 km s−1. The companion moves
only slightly above or below the local sound speed. We therefore
conclude that the SPH noise could not significantly influence the
solution. Also, since the motion of the companion is not highly
supersonic, the shocks are not strong and we can use Enzo with
the faster Zeus solver.

Unlike the SPH computational domain, the Enzo grid is
spatially limited. Thus, the evolution of the gas that leaves the
grid cannot be followed. Therefore, we use the SPH2 simulation
to study the global evolution of the angular momentum and the
energy of the system.

We compute the angular momentum using the center of mass
of the SPH particles as the center of reference. As shown in
Figure 8 for the 0.6 M� companion case, the total angular

momentum of the system is conserved to less than 1%. Since
the ejection of the gas is asymmetric, the center of reference
is eventually located outside the orbit. Consequently, studying
the orbital components individually is irrelevant as the sign
of each component changes during a single orbit. Therefore,
we study their sum Jorb instead. During the first 50 days,
angular momentum from the orbit almost equally spins up the
envelope and unbinds mass from the outer layers. Later on,
additional mass no longer gets unbound (see Section 5.1.2)
and the angular momentum lost from the orbit spins up the
bound envelope only. Since the unbound mass is located at large
distances from the primary’s core, there is no longer exchange
of angular momentum between the unbound mass and the rest
of the system. After ∼150 days, there is no longer angular
momentum exchange in the system. The primary’s core and the

7
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Figure 6. Density slices in the orbital plane (left) and in the perpendicular plane
(right) at 0, 50, 85, and 130 days (from top to bottom) for the Enzo7 simulation.
The scale used for the velocity vector field is the same on each frame and is
such that the velocity shown on the top panel equals the initial orbital velocity
of the primary (∼23 km s−1).

(A color version of this figure is available in the online journal.)

companion—which are the main contributors to the calculation
of the center of mass—switch positions twice per orbit, which
leads to small periodic motions of the center of mass. These
periodic displacements are the causes for the small angular
momentum fluctuations of the orbital components and the bound
mass occurring after 100 days.

We plot the various energy components in Figure 9. We start
by explaining the different components of potential, thermal,
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Figure 7. Evolution of the companion velocity for the Enzo7 simulation.

and kinetic energies represented and how they are computed.
Among numerous other attributes, each particle i possesses a
specific gravitational potential energy φi , a specific thermal
energy ui, and a specific macroscopic kinetic energy ki. By
definition,

φi =
∑

j particles, j �=i

−G
M

grav
j

rij

, (15)

where G is the gravitational constant, M
grav
j is the gravitational

mass of particle j, and rij is the distance between particles i and j.
We compute these different components using the gravitational
mass of the particle for the gravitational potential energy and the
macroscopic kinetic energy, and the SPH mass for the thermal
energy (see Section 3):

Φi = M
grav
i φi (16)

Ki = M
grav
i ki (17)

Ui = M
sph
i ui, (18)

where M
sph
i is the SPH mass of particle i used to compute

its acceleration due to pressure. We recall that both masses
are identical for all particles except the primary’s core and the
secondary. Thus, the total gravitational potential energy of the
system is

Φtot = 1

2

∑
i particles

Φi . (19)

Finally, we subtract the contribution of the secondary from
the total potential energy in order to calculate the binding energy
of the envelope:

Φenv = Φtot − M
grav
2 φ2, (20)

where the subscript “2” stands for the secondary.
During the first 200 days when most of the inspiral happens,

the total internal energy of the system decreases by more than
a factor of two: the envelope expands and therefore cools. The
energy released is transferred mostly into macroscopic kinetic
energy of the gas: the envelope is lifted up, accelerated, and
the outermost part of the envelope becomes unbound in the first
50 days. At later times, more energy is transferred from the

8
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(A color version of this figure is available in the online journal.)
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Figure 9. Energy components for the SPH2 simulations. Plotted are the total energy (Etot), the total gravitational potential energy Φtot, the internal energy of the system
(Utot), the gravitational potential energy of the envelope (Φenv), the gravitational potential energy from the core–companion interaction (Φc2), the kinetic energy of
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system (Ec2), and the total energy of the envelope (Eenv ≡ Φenv + Utot + Kb). The beat frequency seen on Kc2 and Φc2 are due to the non-synchronization between
the orbital period and the data dumping frequency.

(A color version of this figure is available in the online journal.)

orbit to the envelope but no more material becomes unbound.
One can easily note in Figure 9 how the variations of the orbital
energy of the core–secondary system and of the total energy
of the envelope balance each other. The total energy of the
envelope remains negative throughout the simulation. We follow
the evolution of the unbound particles and determine their initial
position in the envelope. Figure 10 shows the cumulative mass
of the particles that will eventually get unbound as a function of
their initial distance from the core. It confirms that the unbound

mass was initially located in the outer part of the envelope and
that almost all gas located initially closer than 40 R� from the
primary’s core remains bound at the end of the simulations.

4.2. Code Comparison

The fact that a code solves the equations in an accurate and
precise way in a particular situation does not necessarily mean
it will do so in another regime. Thus, a direct comparison of

9



The Astrophysical Journal, 744:52 (17pp), 2012 January 1 Passy et al.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Radius (R
Sun

)

C
um

ul
at

iv
e 

U
nb

ou
nd

 M
as

s 
(M

S
un

)

Figure 10. Initial distribution within the envelope of the mass that will eventually
get unbound for SPH2.

simulations of the CE interaction using two different numerical
methods is a good solution for testing the ability of the two
methods to model this problem. One can see in Figure 11 and

Table 1 that for each binary system, the final separations in
the Enzo simulations are very close to those obtained with the
equivalent SNSPH simulations. We may then compare the mass
evolution of the material in the volume defined by the Enzo grid,
the matter within the initial volume of the primary, and within
the current separation. For the 0.6 M� companion (Figure 12),
both the mass within the Enzo grid and the mass within the initial
volume of the progenitor agree well between the Enzo and the
SNSPH runs. For the mass within the orbit we notice a difference
of ∼10−2 M� between the Enzo and the SNSPH runs. This
difference is large compared with the mass of an SPH particle
(∼10−6 M�) and is due to how accurately accretion of the gas
by the core and the companion is resolved by the two codes.
We have plotted, in Figure 13, density profiles at different times
along the line joining the primary core and the secondary, for the
three simulations with the 0.9 M� companion. Accretion onto
the secondary is better resolved in the SPH simulations in which
the maximum density of the matter accreted by the companion
is about 10−3 g cm−3. This maximum value depends on the
resolution of the runs. In the single-grid Enzo runs, accretion
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Figure 11. Separation between the core of the primary and the 0.6 M� companion as a function of time for the SPH2 (left), Enzo2 (middle), and Enzo7 (right)
simulations. Again, the beat frequency seen in the SPH simulation is due to the non-synchronization between the orbital period and the dumping frequency.
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Figure 12. Each panel shows the mass within the equivalent Enzo grid (plain), the initial volume of the primary (dash), and the orbit (cross-solid) as a function of time
for the SPH2 (left), Enzo2 (middle), and Enzo7 (right) simulations.
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Figure 13. Density profiles along the line joining the core and the 0.6 M�
companion at 0 (dotted line), 50 (dash-cross line), 100 (dash-dot line), 300
(dashed line), and 500 (solid line) days for SPH2 (top), Enzo2 (middle), and
Enzo7 (bottom). The vertical lines show the position of the companion.

is poorly resolved due to the low number of cells resolving the
local region around each particle. Although mass is still accreted
around the particles, it eventually becomes dispersed. For the
SPH runs, around 60 particles interact within a smoothing length
so the accretion zone is well resolved. On the other hand, the cell
width of the Enzo 2563 runs is about 1.6 R� so the accretion zone
cannot be resolved although it is still better than for the Enzo
1283 simulations as can be seen from comparing the different
density profiles at 50 days (Figure 13). However, the accurate
simulation of accretion onto the secondary is not crucial for
the global evolution of the system: as we mentioned earlier, the
evolution is not driven by accretion but by drag forces. Although
the density of the matter accreted by the companion differs by
up to three orders of magnitudes between the two methods, the

accreted mass is negligible compared with the companion mass
and the final orbital separations are very similar.

Ricker & Taam (2008) used the FLASH code (Fryxell et al.
2000) to study the CE evolution of a binary system consisting
of a 1.05 M� RGB star having a 0.36 M� core and a 0.6 M�
companion. Their implementation is somewhat different from
ours since they treat the red giant core and the companion
as spherical clouds of particles. In spite of those differences,
their progenitor is almost identical to ours and they find a final
separation of 20 R� which falls within the range of the results
given by our simulations SPH2, Enzo2, and Enzo7. Moreover,
one can see in Figure 7 that for the 0.6 M� companion, the
velocity of the companion stays below 50 km s−1 and therefore,
the gas flows are subsonic except in the outer layers. This
conclusion was also reached by Ricker & Taam (2008).

4.3. The Impact of Initial Conditions

In order to determine the sensitivity of the final state of
the system to the initial parameters, we start with the Enzo3
simulation and increase by 5% either the initial velocity of the
secondary (Enzo11) or the initial separation between the two
particles (Enzo12), which correspond to initial eccentricities
of 0.10 (Enzo11) and 0.05 (Enzo12). The evolution of the
separation for those three simulations is compared in Figure 14.
For Enzo11 and Enzo12, the ratio of the initial velocity of
the companion to the velocity required for a circular orbit is
higher than one (v0/vcirc > 1), so the separation must first
increase. The larger the orbital separation, the more delayed
the rapid infall phase is, and the later the system reaches its
final separation. The final separations for Enzo3, Enzo11, and
Enzo12 are 11.7, 12.0, and 12.2 R�, respectively, and the final
eccentricities are 0.09, 0.17, and 0.18, respectively. As expected,
the companion that moves outward the farthest initially, sinks
into the envelope with a higher orbital decay velocity. Therefore,
it attains a more eccentric orbit and completes fewer revolutions
around the primary core (Figure 14). However, the standard
deviation of the final separation between the three simulations
(σ ∼ 0.2 R�) is more than 10 times smaller than the width of a
cell. Consequently, we conclude that the final results are quite
insensitive to the initial conditions at the level tested.

4.4. Gravitational versus Hydrodynamic Drag

The drag exerted on the companion has two components:
gravitational and hydrodynamical. The former is due to grav-
itational forces from matter flowing past the companion and
colliding with its wake (Bondi & Hoyle 1944; Iben & Livio
1993), while the latter is due to ram pressure forces on the com-
panion. The hydrodynamical contribution can be estimated as

Fhydro ∼ ρv2
2 × πR2

2, (21)

where R2 is the radius of the secondary, v2 is the relative velocity
between the secondary and the envelope, and we have taken the
coefficient of drag to be unity for simplicity. In a similar manner,
the gravitational drag is approximated by (Iben & Livio 1993)

Fgrav ∼ ρv2
2 × πR2

A, (22)

where the accretion radius RA is defined as

RA = 2GM2

v2
2 + c2

s

, (23)
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Figure 14. Left: separation between the core of the primary and the companion as a function of time for the Enzo3 (solid blue), Enzo11 (dashed red), and Enzo12
(dash-dot green) simulations. Right: a detail of the comparison from the left panel at ∼340 days.

(A color version of this figure is available in the online journal.)

where cs is the sound speed of the medium. Choosing |v| =
2cs = 80 km s−1 with an 0.6 M� companion yields RA ∼
30 R�. Assuming R2 ∼ 1 R�, we conclude that the hydrody-
namical drag is of the order of almost 1000 times smaller than
the gravitational drag, and thus negligible.

This conclusion is also confirmed by the outcomes of our
simulations. Indeed, the primary’s core and the companion are
treated as point masses and are not pressure sources, except for
the primary’s core in the SNSPH simulations. Instead of being
caused by the finite size of the particles, hydrodynamical drag
in the models is thus due to the matter accreted around them. We
pointed out earlier that the accuracy with which accretion was
treated was different between the two different models because
of the different finest resolutions and softenings used: accretion
is poorly modeled in the Enzo simulations whereas in the SNSPH
simulations, the companion builds up a sphere of accreted matter
about a few R� wide around itself (Figure 13). This should
lead to differences in the magnitude of hydrodynamic drag
forces. Nevertheless, the consistency of the results suggests that
the hydrodynamic drag is unimportant in the evolution of the
system, confirming the results of Ricker & Taam (2008).

5. DISCUSSION

5.1. Comparison of Simulations and Observations

We now compare the numerical results with a sample of 61
observed post-CE systems listed in Zorotovic et al. (2010) and
De Marco et al. (2011).

5.1.1. Final Separations

For a given companion mass (or alternatively mass ratio
q) we obtain three values for the final separation Af , one for
each simulation carried out with that companion mass (Table 1
and Figure 15). One can distinguish between these values at
high q (q � 0.34), which correspond to “heavy” companions
(M2 � 0.3 M�), and the ones at low q (q < 0.34) corresponding
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Figure 15. Final separations as a function of the mass ratio q for the SNSPH
(black cross), Enzo 1283 (blue circle), and Enzo 2563 (red triangle) simulations.

(A color version of this figure is available in the online journal.)

to “light” companions (M2 < 0.3 M�). At high q, the values
of Af are very similar and the standard deviation is more than
20 times smaller than the average value of Af . At low q, the
companion sinks deeper and as a consequence, the resolution
used in the 1283 Enzo simulations is not sufficient. However, as
one increases the resolution to 2563 cells, the final separations
converge to the solutions given by the SNSPH simulations.

Figure 16 shows the distribution of orbital separations reached
by the 61 post-CE systems. For all these systems, there has
been no substantial orbital shrinkage due to phenomena such
as magnetic braking or radiation of gravitational waves (see
discussion in Schreiber & Gänsicke 2003). Although they
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Figure 16. Distribution of post-CE systems as a function of their observed orbital separation from Zorotovic et al. (2010) and De Marco et al. (2011).
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(A color version of this figure is available in the online journal.)

cover a significant range in secondary masses, going from
a 1.1 M� MS star down to a 0.05 M� brown dwarf, all of
them have separations smaller than 11 R�. Furthermore, 87%
of those systems have separations smaller than 4 R�, which
is smaller than any value obtained in our simulations. This
is even more obviously shown in Figure 17, where the final
separations for simulations presented here and in the literature
are compared to the orbital separations of the observed post-
CE systems. Although a couple of observed systems have
q � 0.5, one clearly sees that the simulations with M2 = 0.9
and 0.6 M� leave the companion far out. Systems with lower
mass companions (M2 � 0.3 M�) have by and large lower
orbital separations than in our simulations. Simulations of
Sandquist et al. (1998) and Ricker & Taam (2008) shown in
Figure 17 give results consistent with ours. All these numerical
simulations suggest that the separations between the secondary

and the primary’s remnant at the end of the simulated rapid
infall phase are too large to explain the orbital separation of the
currently observed post-CE systems. This suggests that further
evolution of the orbital separation must occur during the phase
immediately following the rapid infall phase. We discuss this
point further in Section 5.2.

5.1.2. The State of the Envelope at the End of the Simulations

As shown in Table 2, most of the primary’s envelope remains
bound in all of our simulations. We study the situation in
detail for our canonical model with the 0.6 M� companion
here. The evolution of the mass for different components is
plotted in Figure 18. It first confirms that some envelope mass
is unbound only during the first 50 days, after which neither
angular momentum (Figure 8) nor kinetic energy (Figure 9) are
exchanged between the unbound mass and the rest of the system.
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Figure 18. Evolution of the total mass (solid line), the bound mass (dashed line),
the mass within the volume of the Enzo grid (dotted line), the mass within the
initial volume of the primary (dash-cross line), and the mass within the orbital
separation (dash-dot line) for the SPH2 simulation.

It also shows that more than 85% of the mass remains bound
at the end of the simulation. This outcome, already pointed out
by Sandquist et al. (1998), is quite intriguing, since the post-
CE binaries observed must have succeeded in ejecting their
envelope. After about 400 days, most of the envelope mass in
our models has been moved to a larger radius (∼100 R�; see
bottom panel in Figure 19), well outside the orbit of the primary
core and the companion but remaining bound.

We now investigate how bound the final system is. We
consider the center of mass of the system composed by the
secondary and the mass within the current orbit as the center
of our frame of reference. Then, we partition the domain into
concentric shells with identical thickness, calculate the average
radial velocity of each shell, and compare it to the escape
velocity at that location. Figure 19 shows the escape velocity and
the average radial velocity of the shells. The radial velocity is

Table 2
Amount of the Envelope Mass Still Bound at the

End of the SNSPH Simulations

Name M2 Mbound
a

(M�) (M�)

SPH1 0.9 0.44
SPH2 0.6 0.44
SPH3 0.3 0.45
SPH4 0.15 0.46
SPH5 0.1 0.48

Note. a At the start of the simulations, Mbound equals the total
envelope mass Me ≡ M1 − Mc = 0.49 M�.

always positive and is similar to the space velocity at radii larger
than 600 R�, as expected for envelope ejection. At radii smaller
than 300 R�, the radial velocity is much smaller than the space
velocity, suggesting that orbital motions dominate at those radii.
All the mass within 103 R� is bound, which corresponds to more
than 85% of the envelope mass. The remaining mass is found at
radii between 103 and 6 × 103 R�, where the radial velocities
are typically between 25 and 75 km s−1. Those particles were
initially in the outer parts of the giant star, and were the first to
encounter the secondary. At that time of the inspiral, the shock
was slightly supersonic (V2 ∼ 35 km s−1 and cs ∼ 20 km s−1).
This regime of evolution is thus different from later phases when
the secondary sinks deeper into the primary’s envelope, where
its velocity does not really increase (Figure 7) but the sound
speed of the medium does (Figure 3).

We can measure how much extra energy would be required
to unbind the envelope at each radius, using the definition

Eextra =
∑

i

1

2
Mi(ve,i − vr,i)

2, (24)

where ve,i and vr,i are the escape velocity at the location of
the ith shell and its average radial velocity, respectively. One
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Figure 19. Top: comparison between the escape velocity (dashed line) and the radial velocity (black dots) of the final system for the SPH2 simulation. Bottom: mass
enclosed as a function of radius.
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finds Eextra ∼ 8.4 × 1045 erg which represents just over 10%
of the initial binding energy of the primary envelope. Thus, a
relatively small additional input of energy could be sufficient to
completely unbind the remaining envelope material.

We have compared here the final separations deduced from
observations and those determined from the simulations. We
have purposefully stayed away from calculating the ejection
efficiency α (Webbink 1984; De Marco et al. 2011). Indeed,
we question what the relevance of calculating α is when
the envelope has not yet been fully ejected, true both in the
Sandquist et al. (1998) and our simulations. We therefore defer
for the moment the task of calculating α from simulation—a
long-term goal of this project—until the simulations are more
advanced.

In conclusion, the hydrodynamic simulations do not repro-
duce the post-CE systems in the sense that the system is left
at too large separations and the envelope is not unbound at the
end of the rapid infall phase. This means that either physical
processes that are not accounted for in the simulations are re-
sponsible for the envelope ejection, or that the envelope ejection
and a significant reduction of the orbit actually happens during
the later subsequent slow inspiral phase. We discuss both pos-
sibilities in the following section.

5.2. Reproducing the Observations

In this section we first study and quantify physical processes
that are not taken into account in our hydrodynamic simulations
and that might be responsible for ejecting the envelope. Then,
we focus on the subsequent slow inspiral phase and investigate
whether the envelope can be ejected and the separation signifi-
cantly reduced during this subsequent phase.

5.2.1. Rotation of the Primary

The envelope of the progenitor is initially non-rotating and
although the calculation done in Section 3 shows that, regardless
of the initial rotation velocity of the envelope, its rotational
energy is negligible in comparison with its binding energy, we
suspected at first that the absence of rotation might be the reason
for most of the envelope to remain bound. However, Sandquist
et al. (1998) carried out two identical simulations where they
modified the initial rotation state of the primary from a giant
star in synchronization with the orbit to a non-rotating one (their
simulations 1 and 2). In both cases, the evolution of the bound
mass and the final orbital parameters are similar. It thus does
not seem that changing the initial rotation of the primary leads
to a different CE outcome.

5.2.2. Physics not Included in the Simulations

The hydrodynamics codes use an ideal gas equation of state
(Section 2.1) which, by definition, does not include variable
abundances and the different ionization layers of the envelope.
Han et al. (1995) suggested that recombination might play a role
in CE interactions. As the outer parts of the envelope expand
and cool, ions recombine with electrons, releasing energy that
could aid in unbinding the envelope. Although it is unclear
how efficient this process is and how much of the initial
recombination budget can be used, one can calculate an upper
limit on how much energy can be injected into the envelope by
recombination.

According to our stellar evolution model, the hydrogen
fraction within the convective envelope of our RGB star is
X ∼ 0.68. The mass of the envelope is Me = 0.49 M�

and each proton recombining with an electron produces an
energy E0 = 13.6 eV. We also have to calculate how much
of the envelope is ionized. Therefore, we calculate the partition
functions Z for hydrogen. The hydrogen ion has no degeneracy
so Z2 = 1. The partition function for the hydrogen atom at
temperature T is

Z1 =
∞∑

n=1

2n2 exp
E0(1/n2 − 1)

kT
, (25)

where k = 8.6173 × 10−5 eV K−1 is the Boltzmann constant.
We truncate the sum in Equation (25) at the first integer nmax
such that the distance at which the electron orbits the proton
for this quantum number is larger than lmax = 10−6 cm, i.e.,
a0n

2
max > lmax, where a0 = 5.2918 × 109 cm is the Bohr radius

(Miranda 2001). We then use the Saha formula to calculate the
ratio of ionized to neutral hydrogen (Carroll & Ostlie 1996):

N2/N1 = 2Z2

neZ1

(
2πmekT

h2

)3/2

exp (−E0/kT ), (26)

where ne is the number density of free electrons and me is the
electron mass. We find that 91% of the envelope is ionized.
Consequently, the recombination of the whole ionized envelope
would produce an extra energy

Erecomb = 0.91 × XMe

NA

MH

× 13.6 eV, (27)

where NA is the Avogadro number and MH is the atomic mass
of hydrogen. One finds Erecomb ∼ 1.18 × 1046 erg, which is
slightly higher than the extra energy Eextra required to eject
the envelope in our canonical model (Section 5.1.2). Thus, we
conclude that recombination in the envelope could substantially
aid in unbinding it.

Another source of energy could be radiation pressure. For
low- and intermediate-mass giants in hydrostatic equilibrium,
radiation pressure (Prad ≡ aT 4/3, where a is the radiation
constant) is negligible compared to gas pressure (Equation (4)):
for our primary, Prad/Pgas � 0.01 except in a small zone
(0.1 R� � r � 10 R�), where Prad/Pgas � 0.1. However, the
deep inspiral of the companion within the primary’s envelope
will induce local shock heating. The increase of temperature is
proportional to the square of the Mach number (Tarbell et al.
1999), so even if the companion is orbiting at twice the local
sound speed, the radiation pressure to gas pressure after the
shock becomes(

Prad

Pgas

)after

∝
(

Prad

Pgas

)before

(M2)3 = 6.4. (28)

Therefore, including radiation pressure in the equation of state
will increase the total pressure locally and might reduce the
energy required to eject the envelope. However, it is possible
that this effect is globally small, since this extra heating source
is probably very localized around the companion.

5.2.3. The Post-rapid-infall Phase

At the end of the rapid infall phase, the orbit is stable until the
end of the simulations (a few more years). Consequently, there
is no further hydrodynamical coupling between the extended
envelope and the surviving binary. We now investigate whether
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the envelope is likely to be ejected during this slower inspiral
phase.

Although the resolution of the simulations prevents us from
quantifying how much envelope will be left around the core
of the primary, one can still describe qualitatively what the
evolution of the primary’s remnant will be. Figure 18 shows
that less than 10−2 M� is left around the primary’s core, so
the primary will depart the giant branch (Bloecker 1995; but
see also the discussion in De Marco et al. 2011). Then, two
scenarios might occur depending on how long the partially
ejected envelope will take to fall back.

If the star is given enough time to transit to the blue due to
hydrogen burning at the base of the envelope before the lifted
envelope falls back, the star will readjust on its thermal timescale
of the remaining envelope, and eventually end its life as a helium
white dwarf. This transition will last ∼103 years during which
the star will have a luminosity between 300 and 1000 L� (Iben
& Tutukov 1993, see their Figure 1), which is consistent with
the more recent work of Driebe et al. (1998, see their Figure 1).
If we assume the remnant to have a luminosity Lc ∼ 500 L�,
we can compare the gravitational acceleration of a gas particle
with the radiation acceleration defined by

arad = Lc

4πr2

κ

c
, (29)

where r is the distance between the gas particle and the core,
κ = 0.4 cm2 g−1 is the opacity for Thomson scattering for
hydrogen, and c is the speed of light. We still find the radiation
acceleration to be overall almost two orders of magnitude
smaller than the gravitational acceleration.

If on the contrary, the envelope falls back before the pri-
mary’s remnant had crossed the Hertzsprung–Russell diagram,
a circumbinary disk will form (Kashi & Soker 2011). They re-
fer to the numerical work done by Artymowicz et al. (1991),
which suggests that in such a configuration, the binary sepa-
ration will decrease due to Lindblad resonances—mainly—as
well as viscous tides. Although this mechanism has the ad-
vantage of explaining how the orbital separation will diminish
during the subsequent phase, the ability of radiation to eject
the gas will even be reduced in comparison with the previous
situation, so it is not clear how the latter will eventually be
unbound.

In conclusion, radiation acceleration alone does not seem to
be responsible for unbinding the remaining gas, regardless of
the time the partially ejected envelope will remain suspended.

6. SUMMARY AND FUTURE WORK

In this work we have carried out three-dimensional hydrody-
namic simulations of the CE interaction between a 0.88 M�
RGB star and companions with mass ranging from 0.1 to
0.9 M�. We have used both an Eulerian grid code (Enzo) and a
Lagrangian SPH code (SNSPH) with various resolutions. They
both have advantages and disadvantages and can be used for
different purposes: while one might rather use SPH to study
the accretion around the secondary, even a uniform-grid code
is more suitable in resolving the low-density extended enve-
lope. Of course, adaptive mesh refinement combines the advan-
tages of both of these methods at the cost of increased code
complexity.

We first compared the outcomes of those simulations with
each other. We found that the results are very similar for
companion masses M2 � 0.3 M�. We thus conclude that in this

regime, the resolutions used are sufficient to study the global
evolution of the system during the rapid infall phase of the
interaction, which is driven mainly by gravitational drag. For
lower companion masses (M2 � 0.3 M�) that penetrate deeper
in the giant’s envelope, the 1283 Enzo runs are underresolved
but the Enzo results converge to the solutions from the SNSPH
simulations.

We then compared the outcomes of our simulations with
observed post-CE systems. The final separations are found to be
systematically higher than those deduced from observations,
as is the case for the past simulations by Sandquist et al.
(1998), De Marco et al. (2003), and Ricker & Taam (2008).
Moreover, mass is only unbound during the early stages of the
interaction (∼50 days for the 0.6 M� companion) and most of
the envelope remains bound at the end of the simulations, as was
the case for the earlier simulations of Sandquist et al. (1998).
We investigated whether there might be additional processes
that were not accounted for in the simulations. We found that
recombination can contribute significantly, but stellar rotation
and radiation pressure play only marginal roles. Finally, we
wondered whether the bound envelope is a result of imprecise
simulations or a real physical feature. If the latter, then one
would have to follow the subsequent evolution of the system to
determine the actual outcome of the CE. Fall back disks may
form and even have an impact on the inner binary (Artymowicz
et al. 1991; Kashi & Soker 2011).

After the submission of this paper, Ricker and Taam made
their paper Ricker & Taam (2011) available. This paper con-
tinues the work introduced in Ricker & Taam (2008). In their
simulation, only about 25% of the primary’s envelope is un-
bound. Although this value is slightly higher than ours, it is in
agreement with our work in the sense that most of the envelope
remains bound. They also claim that the ejection occurs mostly
in the orbital plane, as it is the case in our simulations. However,
the extended envelope at the end of their simulation is rotating
much faster than it is expanding which is in contradiction with
our results (Section 5.1.2) but might be due to the fact that their
primary is initially rotating.
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