A block with mass \(M \) is connected through a massless cord to a block with mass \(2m \). These are allowed to hang over a pair of masses (each \(m \)) with radius \(R \). What is the downward acceleration of the more massive block?

\[\Sigma F_x = T_1 - mg = ma \]

\[T_1 = ma + mg \]

\[T_2 - T_1 = \frac{1}{2} ma \]

\[T_3 - T_2 = \frac{1}{2} ma \]

\[T_3 - T_2 = 2mg - 2ma \]

\[mg = 4na \]

\[a = \frac{1}{4} g \]
Example:

Let \(y(x, t) = 3.0 \cos \left(\frac{4\pi}{8} x - 8\pi t \right) \)

Describe a traveling wave on a string. Plot \(y(t) \) for \(x = 0 \) and \(y(t) \) for \(t = 0 \). Find \(v, \lambda, T, f \).

\[y(t) = 3 \cos(-8\pi t) \]
\[y(t) = 3 \cos(8\pi t) \]

\[y(x) = 3 \cos(4\pi t) \]

\[y(x) = 3 \cos(4\pi t) \]

\[v = \frac{\omega}{k} = \frac{8\pi}{4\pi} = 2 \text{ m/s} \quad \text{(travels in } +x\text{ direction)} \]

\[\lambda = \frac{2\pi}{k} = \frac{2\pi}{4\pi} = 0.5 \text{ m} \]

\[f = \frac{2\pi}{2\pi} = \frac{8\pi}{2\pi} = 4 \text{ Hz} \]

\[T = \frac{2\pi}{\omega} = \frac{2\pi}{8\pi} = 0.25 \text{ s} \]
Example: What is the force of gravity on a mass m at a distance $r < R_\oplus$ from the center of the Earth?

\[F = -G \frac{m M_{\text{enc}}}{r^2} \]

M_{enc} is mass enclosed in sphere of radius r.

\[M_{\text{enc}} = \rho \frac{4}{3} \pi r^3 \]

\[\rho = \frac{M_\oplus}{\frac{4}{3} \pi R_\oplus^3} \]

So \[M_{\text{enc}} = M_\oplus \frac{r^3}{R_\oplus^3} \]

And therefore:

\[F = -G \frac{m M_\oplus}{R_\oplus^3} \frac{1}{r} \]
Example: An oxygen (O₂) molecule has a total mass of 5.3 x 10⁻²⁶ kg.

If the moment of inertia about an axis passing through the midpoint of the line segment connecting the oxygen atoms is 1.9 x 10⁻⁴⁶ kg m², what is the separation between the O atoms?

\[I = \frac{m}{2} (\frac{D}{2})^2 + \frac{m}{2} (\frac{D}{2})^2 = 1.9 \times 10^{-46} \text{ kg m}^2 \]

\[D^2 = \frac{2I}{m} \]

\[\frac{m}{4} D^2 = 1.9 \times 10^{-46} \text{ kg m}^2 \]

\[D = \left(\frac{4I}{m} \right)^{1/2} \]

\[D = 1.2 \times 10^{-10} \text{ m} = 1.2 \text{ Å} \]
(b) \[T = \frac{2\pi}{\omega} \]

\[\omega = \sqrt{\frac{k}{m}} \]

\[\omega_0^2 = \frac{k}{m} \]

\[\omega = \sqrt{\frac{k}{m}} \]

\[\omega_0^2 = \frac{k}{m} \]

Assume \[\theta(t) = C \cos(\omega_0 t + \phi) \]

To show that \(T = T' = \frac{2\pi}{\omega_0} \).

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

True.

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

\[T = -K\theta = -I\frac{d^2\theta}{dt^2} \]

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

\[T = -K\theta = -I\frac{d^2\theta}{dt^2} \]

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

True.

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

\[T = -K\theta = -I\frac{d^2\theta}{dt^2} \]

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

True.

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

\[T = -K\theta = -I\frac{d^2\theta}{dt^2} \]

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

True.

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

\[T = -K\theta = -I\frac{d^2\theta}{dt^2} \]

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

True.

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

\[T = -K\theta = -I\frac{d^2\theta}{dt^2} \]

Show that \(T = T' = \frac{2\pi}{\omega_0} \).

True.