Physics 102 - January 31, 2011

Brian Greene Appears to have just released (Jm.25) a similon book - "H.dedes Realities" Might be a fun read ... but I've NOT sech it yet.

Measure the length of a boxcar where you are on the car.

Measure the length of a boxcar moving by you.

$$
\mathrm{V}=0
$$

Lorentz transformations

Lorentz transformations

Lorentz transformations

How are ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$) related to ($\left.\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}, \mathrm{t}^{\prime}\right)$?

$$
\begin{aligned}
& \mathrm{z}=\mathrm{z}^{\prime} \\
& \mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\mathrm{v} \frac{\mathrm{x}^{\prime}}{\mathrm{c}^{2}}\right)
\end{aligned}
$$

Lorentz transformations

$$
\mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\mathrm{v} \frac{\mathrm{x}^{\prime}}{\mathrm{c}^{2}}\right)
$$

Lorentz transformations

Space and time get all mixed up
when you relate observations made
from different points of view

$y=y$
$\mathrm{z}=\mathrm{z}^{\prime}$
$t=\gamma\left(t^{\prime}+v \frac{x^{\prime}}{c^{2}}\right)$

All other things that can be observed must have "relativisitic transformations", too!

$$
\begin{aligned}
& \mathrm{x}=\gamma\left(\mathrm{x}^{\prime}+\mathrm{vt} \mathrm{t}^{\prime}\right) \\
& \mathrm{y}=\mathrm{y}^{\prime} \\
& \mathrm{z}=\mathrm{z}^{\prime} \\
& \mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\mathrm{v} \frac{\mathrm{x}^{\prime}}{\mathrm{c}^{2}}\right)
\end{aligned}
$$

$$
\mathrm{p}=\mathrm{mv}
$$

ANNALEN

anosondit end pontomereser dences W. GLEERT, 1. C. POGGESDORFF, G. UND E. WIEDEYIKK. VIEBTE FOLGE.

BAND 17. pes quszes netis 302. nasp.

KURATOBIUM: F. KOHLRAUSCH, M. PLANCK, G. QU W. C. RONTGEN

ONTER MITWIBKUNG
DEUTXChen Physikninschen oyselischar
M. P【ATCK
yuraungmoserser vos
PAULDRUDE.
MII FUNF FIGURESTAFELS.

LEIPZIG, 1905

3. Zur Elekitrodynamik bewegter Körper; von A. Einstein.

DaB die Elektrodynamik Maxwells - wie dieselbe gegenartig aufgefaBt zu werden pflegt - in ibrer Anwendung suf ewegte Körper 20 Asymmetrien fubrt, welche icht anzuhaften scheinen, ist fubrt, de elektrodynamische W, ist bekannt. Man denke z. B. an uten und einem Leiter. Das beobachtbare Phen einem Magbicr nur ab von der Re Das beobachtbare Phänomen hängt wil rend nach der üblichen Aewegung yon Leiter und Magnet, おer eine oder der üblichen Auffassung die beiden Falle, daB roncinander der andere dieser Körper der bewegte sei, streng und ruht der Leiter, so entsteht in dert sich nămlich der Magnet ein clektrisches Feld von gewissem der Umgebung des Magneten den Orten, wo sich Teile gewissem Energiewerte, welches an erzeugt. Ruht aber der Magnet und befinden, einen Strom so entsteht in der der Magnet und bewegt sich der Leiter, Feld, dagegen im Umgebung des Magneten kein elektrisches in sich Keine Energer eine elektromotorische Kraft Wcher Relativbewegung bei den beiden die aber - Gleich grausgesetzt - bei den beiden ins Auge gefaBten orsd demselben Verlaufe Versen Strömen von derselben die elektrischen Kräfte Beisriele ah
6. Bewpele ăhnlicher Art, sowie die miBlungenen Versuch Betach Bung der Erde relativ zum, "Lichtmedium" zu kon absoluten Ruhe zu der Vermutung, daB dem Begriffe der des Elektrodynamik keine in der Mechanik, sondern auch in uprechen, sondern keine Eigenschaften der Erscheinungen entwelche die mechalmebr fur alle Koordinatensysteme, (hon elektrodynamischen und elehungen gelten, auch die fur die GröBen erster Ordnang optischen Gesetze gelten, wie diese Vermutung (deren Inbalt im erwiesen ist. Wir fativital" genannt werden wird) zur Folgenden „Prinzip and außerdem die mit ihm nur scheinbar unvertrung er-

$\xrightarrow{\text { 号 }}$

gravitation

Electromagnetic Force
$F=\frac{k q_{1} q_{2}}{r^{2}}$

Familiar "Fields"

Electric field
Surrounding a Positively charged

Electric field
Surrounding a negatively charged particle

Electric field
around one charged particle

Electric field around two charges of opposite sign

