Example: The simple pendulum

- Suppose we release a mass m from rest a distance h_{1} above its lowest possible point.
\leftarrow What is the maximum speed of the mass and where does this happen?
ϵ To what height h_{2} does it rise on the other side?

Example: The simple pendulum

- $E=1 / 2 m v^{2}+m g y$.
\& Initially, $y=h_{1}$ and $v=0$, so $E=m g h_{1}$.
\leftarrow Since $E=m g h_{1}$ initially, $E=m g h_{1}$ always since energy is conserved.

Example: The simple pendulum

- Kinetic+potential energy is conserved since gravity is a conservative force ($E=K+U$ is constant)
- Choose $y=0$ at the bottom of the swing, and $U=0$ at $y=0$ (arbitrary choice)

$$
E=1 / 2 m v^{2}+m g y
$$

Example: The simple pendulum

- $1 / 2 m v^{2}$ will be maximum at the bottom of the swing
- So at $y=0 \quad \Rightarrow 1 / 2 m v^{2}=m g h_{1} \quad \Rightarrow v^{2}=2 g h_{1}$

$$
v=\sqrt{2 g h_{1}}
$$

$$
y=h_{1} \mid-\cdots+\cdots
$$

Example: The simple pendulum

- Since $E=m g h_{1}=1 / 2 m v^{2}+m g y$ it is clear that the maximum height on the other side will be at $y=h_{1}=h_{2}$ and $v=0$.
- The ball returns to its original height.

Generalized Work/Energy Theorem:

$$
W_{N C}=\Delta K+\Delta U=\Delta E_{\text {mechanical }}
$$

- The change in kinetic+potential energy of a system is equal to the work done on it by non-conservative forces. $\mathrm{E}_{\text {mechanical }}=\mathrm{K}+\mathrm{U}$ of system not conserved!

Problem: Block Sliding with Friction

- A block slides down a frictionless ramp. Suppose the horizontal (bottom) portion of the track is rough, such that the coefficient of kinetic friction between the block and the track is μ_{k}.

E-If all the forces are conservative, we know that $\mathrm{K}+\mathrm{U}$ energy is conserved: $\Delta K+\Delta U=\Delta E_{\text {mechanical }}=0$ which says that $W_{N C}=0$.
-If some non-conservative force (like friction) does work $\mathrm{K}+\mathrm{U}$ energy will not be conserved and $W_{N C}=\Delta E$.
\leftarrow How far, x, does the block go along the bottom portion of the track before stopping?

Problem: Block Sliding with Friction...

- Using $W_{N C}=\Delta K+\Delta U$
- As before, $\Delta U=-m g d$
- $W_{N C}=$ work done by friction $=-\mu_{k} m g x$.
- $\Delta K=0$ since the block starts out and ends up at rest.
- $W_{N C}=\Delta U \quad \Rightarrow \quad-\mu_{k} m g x=-m g d$

