Physics 113 - December 11, 2012

Physics 113 - Exam 3 distribution

Solutions are posted on class website

(mean)
Understanding Normalization - Fictitious Illustrative Example

4 Exams
You are allowed a "drop"
I can't make all 4 exams of equal difficulty
⇒ Must do something to take into account the different difficulties
⇒ Suppose you were sick for exam I
Scale all exam grades for Exam n by \[
\frac{100}{\text{Mean of Exam } n}
\]

Highest possible score ... 100 on Exam III
\[\frac{(100)(100)}{50} = 200\]
$E_1 = \frac{53}{83} \times 100 = 64.1$

$E_2 = \frac{70}{57} \times 100 = 122.8$

$E_3 = \frac{75}{57} \times 100 = 132$

And so forth for exams.
I use the new normalized scores in the algorithm weighting components appropriately.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Exam 3</th>
<th>Final exam</th>
<th>Lab</th>
<th>Prob sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>---</td>
<td>20%</td>
<td>20%</td>
<td>35%</td>
<td>16%</td>
<td>9%</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>---</td>
<td>20%</td>
<td>35%</td>
<td>16%</td>
<td>9%</td>
</tr>
<tr>
<td>3</td>
<td>20%</td>
<td>20%</td>
<td>---</td>
<td>35%</td>
<td>16%</td>
<td>9%</td>
</tr>
<tr>
<td>4</td>
<td>18%</td>
<td>18%</td>
<td>18%</td>
<td>21%</td>
<td>16%</td>
<td>9%</td>
</tr>
</tbody>
</table>

I look at these cases individually.

Get a new distribution \(\rightarrow \) call it best numerical average distribution (not necessarily a 0-100 scale)

Typical forms:
- A range: \(20-25 \% \)
- B range: \(\sim 50 \% \)
- C range: \(\sim 20-25 \% \)
Waves on string - reflection

Fixed end ~ 180° phase change

Loose end
No phase change
look at wave propagating on string and add together with reflected wave (both have same frequency + amplitude)
use principle of superposition, they “interfere”

\[y(x,t) = (-2A) \sin(\omega t) \cos(kx) \]

- Fixed form in space
- Periodic in \(\chi \)

Standing Waves

2A = Amplitude of superposition

Time Variation
Tension, T
Mass/length, m

Fundamental $L = \frac{L}{2}$ 1st harmonic

2nd harmonic $L = 2 \cdot \frac{L}{2} = \lambda$

3rd harmonic $L = 3 \cdot \frac{L}{2}$

Higher harmonics $\rightarrow L = n \frac{L}{2}$ $n = 1, 2, 3 \ldots$

\[v = f_n \lambda_n \]
\[v = \sqrt{\frac{T}{m}} \text{ on string} \]

\[f_n = \frac{v}{\lambda_n} \]
\[f_n = \frac{n}{2L} \sqrt{\frac{T}{m}} \text{ are frequencies that "resonate" on string} \]
For Tubes/sound (wind instruments)

- Open end
- Displacement antinode (pressure node)
- Closed end
- Displacement node (pressure antinode)

What are frequencies that resonate in a tube of length L that is closed at 1 end?
fundamental: \(L = \frac{\lambda}{4} \)

2nd harmonic: \(L = \frac{3}{4} \lambda \)

3rd harmonic: \(L = \frac{5}{4} \lambda \)

where \(n = 1, 3, 5 \ldots \)

\[v = \frac{f \lambda}{n} \]

\[v = \frac{f_n}{n} \lambda_n \]

\[L = \frac{n \nu}{4L} \quad n = 1, 3, 5 \]

Frequencies that resonate on this instrument

Tune + warm up musical instrument

\(v \) sound = \(343 \text{ m/s} \) at \(20^\circ \text{C} \)
Beats

Two waves passing a fixed point \((x=0)\)
Differ slightly in frequency
Equal amplitudes

Wave 1
\[
\chi_1(x,t) = A \sin(k(x-x_0),t) = A \sin(\omega t)
\]
\[
\chi_2(x,t) = A \sin(\omega_2 t)
\]

Use superposition
\[
\chi(x,t) = \chi_1(x,t) + \chi_2(x,t)
\]
\[
\chi(x,t) = A \sin(\omega t) + A \sin(\omega_2 t)
\]

Use Trig ID
\[
\sin A + \sin B = 2 \sin \left(\frac{1}{2} (A+B) \right) \cos \left(\frac{1}{2} (A-B) \right)
\]
\[X(t) = 2A \sin \left(\frac{(\omega_1 + \omega_2)t}{2} \right) \cos \left(\frac{(\omega_1 - \omega_2)t}{2} \right) \]

Sensitive way to detect small frequency differences: Hear this sound!

Think of this as amplitude (intensity \(\sim \) Amplitude\(^2\)) that varies in time with frequency \(\sim \frac{\Delta \omega}{2} \)
Energy flow in waves

\[\frac{dE}{dt} \sim A^2 V \]

This is why I say intensity \(\sim A^2 \).

\[\text{same Energy} \]
\[\text{larger Area} \Rightarrow 4\pi r^2 \]

Energy flow (intensity)

\[
\frac{\text{Energy flow}}{\text{Area}} \text{ drops as } r^2
\]

True for light, sound...
Intensity = \frac{\text{Power}}{\text{Area}} \quad \text{Watts} \quad \text{M}^2

Intensity of Sound

Define \(I_0 \) as reference intensity
\(1 \times 10^{-12} \ \text{W/M}^2 \)

Threshold of hearing for average person

\[\beta \ (\text{decibel}) = 10 \log \frac{I}{I_0} \]
Threshold \(\frac{dB}{0} \)
Whisper \(\sim 20 \)
Street Traffic \(\sim 70 \)
Siren @ 30 m \(\sim 100 \)
Rock concert at pain Threshold \(\sim 120 \)
Jet engine at 30 m \(\sim 140 \)

Example:
Stereo Ad flat response \(\pm 3 \text{ dB} \) from 30 Hz to 18,000 Hz

What does this mean for relative intensity variation?
\[\beta - \beta_1 = 10 \log \frac{I}{I_0} - 10 \log \frac{I_1}{I_0} \]

\[3 \, \text{dB} = 10 \log \frac{I}{I_1} \quad \Rightarrow \quad \frac{I}{I_1} = 2 \]
If $r_1 = r_2$

Constructive interference

$$r_1 - r_2 = n\lambda$$

If $r_1 - r_2 = n\lambda - \frac{\lambda}{2}$

Destructive
Doppler effect

Source moving toward you

\[f_{\text{hear}} = \frac{f_{\text{source}}}{\left(1 - \frac{v_{\text{source}}}{v_{\text{wave}}} \right)} \]

Source moving away

\[f_{\text{hear}} = \frac{f_{\text{source}}}{\left(1 + \frac{v_{\text{source}}}{v_{\text{wave}}} \right)} \]