Final Exam (December 19, 2013)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given unless specified otherwise.

Problem 1 (4 pts):
A second ball is dropped from a cliff 1 s after a first ball was dropped. As both fall, does the distance between them increase, decrease, or stay the same? Justify your answer with a short sentence.
The distance increases. Both undergo constant acceleration after Starting From re si. The first ball has been accelunationg at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ For is and is atreach moving at $9.8 \mathrm{~m} / \mathrm{s}$ when the second bal is chopped. Problem 2 (6 pts, 3 pts per part):
Vector $\overrightarrow{\mathbf{A}}$ is equal to $-\mathbf{5 i}+7 \hat{\mathbf{j}}$ Vector $\overrightarrow{\mathbf{B}}$ is equal to $+2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}$ The tine evolution of the speed of the 2 wall will alums lag that of the 1 ST during the tail
(a) What angle does the vector $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ make with the x-axis?

$$
\vec{A}+\vec{i}=-3 \hat{i}+11 \vec{j} \quad \theta=15.2^{0}
$$

(b) Determine A.B

$$
\begin{aligned}
\vec{A} \cdot \vec{B}=(-5)(2)+(7)(4)= & -10+28 \\
= & +18
\end{aligned}
$$

Problem 3 (6 pts, 3 pts per part):
Consider the five vectors shown in the sketch. The vectors \mathbf{B}_{1} through \mathbf{B}_{4} are each of the same magnitude and differ only in direction. Consider the vectors $\mathbf{A} \times \mathbf{B}_{1}, \mathbf{A} \times \mathbf{B}_{2}, \mathbf{A} \times \mathbf{B}_{3}$, and $\mathbf{A} \times \mathbf{B}_{4}$.

$$
\operatorname{Tan} \theta=\frac{3}{21}
$$

Angle af axis $=90-15.2$ $\cong 75^{\circ}$
$107-x$
AxiS
(a) Which of these four vectors has the largest magnitude?

$$
\begin{array}{r}
\vec{A} \times \vec{B}_{W} \text { has langgat } \\
\text { Magnitude }
\end{array}
$$

(b) Which of these four vectors has the smallest magnitude?
nonzero

$$
\begin{aligned}
& \vec{A} \times \vec{B}_{3} \\
& \text { has the smallesT }
\end{aligned}
$$

nonzero magnitude

Problem 4 (5 pts):
True STOCY
A world's land speed record was set by Col. John P. Stapp when, on March 19, 1954, he rode a rocket-propelled sled that moved down a track at $1020 \mathrm{~km} / \mathrm{hour}$. He and the sled were brought to a stop in 1.4 s . What acceleration did he experience during that 1.4 seconds? You can assume this acceleration is constant.
$1020 \mathrm{kgh} / \mathrm{ht} \times 1000 \frac{\mathrm{~m}}{\mathrm{I}_{2} \mathrm{~m}} \times \frac{1}{60 \mathrm{~m} \% \mathrm{~m}} x$

Problem 5 (5 pts):

$$
\begin{aligned}
& V=V_{0}+a t \\
& 0=283+a(1.4)
\end{aligned}
$$

$$
\sim 20, b g_{\text {wow! }}^{\prime \prime} \quad a=-202 \mathrm{~m} / \mathrm{s}^{2}
$$

A rock of mass 0.5 kg is tied to a string and twirled in a circle in the vertical plane (see sketch) by a person standing on the surface of the earth. The radius of the circle is 1.2 m . If the rock goes around the circle with a period of 2 seconds, what is the tension in the string when the rock is at the top of its motion?

Problem 6 (4 pts):
Two balls of the same size are completely submerged in water. Ball 1 is made of wood. Ball 2 is made of aluminum. The buoyant force is largest on
(a) Ball 1
E_{b} is Mass of displaced
(b) Ball 2 water - Same for each
(c) Neither ball. The buoyant force is the same on the balls.
(d) Neither ball. There is no buoyant force on objects that are completely submerged.

Problem 7 (7 pts):
If you blow air across the mouth of an empty soda bottle, you hear a tone. Briefly explain why it is that if you put some water in the bottle, the pitch of the tone increases, i.e.,the frequency of the sound you hear increases.
The sound you hear is the fumamutal frequency of the Standing sound wanes resonating in the botel. For an opt end tube the length of the tube corresponds to $\frac{1}{4} \lambda$ for the fund comatal. If you

1$)$	$/ 4$
$2)$	$/ 6$
$3)$	$/ 6$
$4)$	$/ 5$
$5)$	$/ 5$
$6)$	$/ 4$
$7)$	$/ 7$
$8)$	$/ 8$
$9)$	$/ 8$
$10)$	$/ 10$
$11)$	$/ 10$
$12)$	$/ 11$
$13)$	$/ 12$
tot	$/ 100$

Problem 8 (8 pts):
Samantha Sweetie has a mass of 40 kg and is probably unhappy with me for telling you that. Oh well. Samantha sits on the surface of a smooth, frozen lake 15 meters from an 8.4 kg sled. She pulls on the sled by means of a massless rope with a constant force of 5.2 N . Relative to

Samantha's initial position, where does she meet the sled?
Samenthen

$$
\xi_{\text {sh u }}
$$

use $x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
Problem 9 (8 pts):

$$
\begin{aligned}
a_{\text {sam }} & =\frac{5.2}{40}=0.13 \mathrm{~m} / \mathrm{s}^{2} \\
\text { sled } \quad a_{\text {sled }} & =\frac{5.2}{8.4}=0.62 \mathrm{~m} / \mathrm{s}^{2} \\
x & =\frac{1}{2}(.13) t^{2} y x=\frac{1}{2}(.13)(30-2 x) \\
15-x & =\frac{1}{2}(.62) t^{2} \quad x=3.1-0.21=2.9 \mathrm{~m}
\end{aligned}
$$

Consider a mass $\mathrm{M}=0.2 \mathrm{~kg}$ attached to a spring with spring constant $\mathrm{K}=20 \mathrm{~N} / \mathrm{m}$. The mass is free to move on a frictionless surface otherwise. The situation is sketched below in figure I. The mass is moved so that the spring is compressed by 0.1 m (relative to its natural length) and then released.
(a) (3 pts) With what period does this mass oscillate?

$$
\begin{aligned}
& \text { (a) (3 pts) With what period does this mass oscillate? } \\
& \omega=\sqrt{\frac{k}{M}}=10 \mathrm{~s}^{-2} \quad \frac{2 \pi}{\omega}=\frac{2 \pi}{10}=0.63 \text { seconds }
\end{aligned}
$$

(b) (5 pts) Consider the situation sketched in figure II. In this case the same mass is attached to three identical springs with the same spring constant as in part (a). When the mass is not moving, each spring is at its natural length. When the mass is displaced to one side and released, what is the frequency of its oscillation?

$$
F=-k x
$$

$$
k \rightarrow 3 k
$$

$$
\begin{gathered}
F=-k x \\
d \frac{k}{2} x+\frac{k x}{m}=0 \\
d 7^{2} \\
\omega^{2}=\frac{k}{m} \\
\omega={ }^{k / m}
\end{gathered}
$$

$$
\omega=\sqrt{\frac{3 k}{M}}=\frac{17.3 \mathrm{~S}^{-1}}{x}
$$

$$
\text { ok if this } \lambda
$$

$$
T=2 \pi / \omega
$$

or

$$
\omega=2 \pi / \pi
$$ Can swith to

$$
w=2 \pi f
$$

Either

$$
f=\frac{\omega}{2 \pi}=\frac{17.3}{2 \pi}=2.7 S^{-1}
$$

w or f okay Answers

Problem 10 ($10 \mathrm{pts}, 5 \mathrm{pts}$ per part):
Thad Cool is the party chairman of his fraternity. He delivers a case of orange soda to the fraternity house by sliding it along a frictionless track from one level to a higher level. The soda case passes through a depression of depth h_{1} (as compared to the initial height) and then rise up to the higher level, which is a height of h_{2} above the initial level. At the higher level, the cases encounter a flat surface with a coefficient of kinetic friction of 0.6 , which brings them to a stop a distance d from the start of the surface with friction. Suppose the case starts with a velocity of $7.0 \mathrm{~m} / \mathrm{s}$ and $\mathrm{h}_{1}=1$ meter and $h_{2}=0.5$ meters.
Evans.
(a) Determine d.

$$
\begin{aligned}
& \frac{1}{2} m r_{0}^{2}=m g h_{2}+m g \mu_{k} d \\
& \frac{7^{2}}{2}=(9.8)(0.5)+(9.8)(0.6) d \\
& \\
& (24.5-4.9)(9.8)(.6)=d
\end{aligned}
$$

(b) How much work does the force of friction do on the case of orange soda?

$$
\begin{aligned}
& f_{f r} \xrightarrow[d]{ } \quad w^{\prime}=\int F \cdot l s \\
& F_{r i c t i m}^{F}=-m g \mu_{k} d=-(10)(9.8)(\cdot b)(3.3)
\end{aligned}
$$

Problem 11 ($10 \mathrm{pts}, 5 \mathrm{pts}$ per part):
Fresh water behind a reservoir dam is 14 meters deep. A horizontal pipe 4.0 cm in diameter passes through the dam 6 meters below the water surface. A plug secures the pipe opening.

$$
\text { Force of water ploy }=(58800) \text { Amen }=(58800) \text {) }(.02)^{2}
$$ $=74 \mathrm{~N}$

so friction force Must be $74 N$

$$
\begin{aligned}
\operatorname{\rho g} h & =\frac{1}{2} \rho v^{2} & \text { Volume }=(\text { Area })(v)(t i m e) \\
v^{2} & =\sqrt{2 g^{h}} \Rightarrow v=10.8 \mathrm{M} / \mathrm{s} \quad & =\pi(.02)^{2}(10.8)(1000)=13.6 \mathrm{~m}^{3}
\end{aligned}
$$

Problem 12 (11 pts):
Mass m hangs from a massless rope connected to a massless pulley that is free to move up and down (position 1 in diagram). Another rope is attached to the ceiling and loops around the pulley at position 1 and then is spooled (wrapped multiple times) about a wheel at position 2 in the diagram. The wheel at position 2 is free to rotate about an axis at its center and it has mass M_{2} and radius r. If needed, consider the moment of inertia of the wheel at position 2 to be (1/2) $\mathrm{M}_{2} \mathrm{r}_{2}$. The wheel at position 2 is connected to a wheel at position 3 by a massless rubber belt. The belt goes around the wheel at position 2 in such a way that it does not interfere with the motion of the spooled rope that loops around the pulley at position 1 . The wheel at position 3 has mass M_{1} and radius R. The wheel at position 3 is free to rotate about an axis through its center and, if needed, assume it to have a moment of inertial of $(1 / 2) \mathrm{M}_{1} \mathrm{R}_{2}$. The spooled rope and the belt move without slipping on the pulley and wheels. The system described above and in the sketch is released from rest with the mass m a distance h above the floor. Find the speed of mass m just before it hits the floor given $\mathrm{M}_{1}=2 \mathrm{~kg}$, $\mathrm{M}_{2}=0.5 \mathrm{~kg}, \mathrm{~m}=3 \mathrm{~kg}$, and $\mathrm{h}=0.4$ meters.

Try uneasy cons Paration Note that as m moues down Δx alenath of zax Of string is pulled from Spool at z Initially nothompoving $E \rightarrow$ mg

$$
m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}+\frac{1}{2} I_{3} \omega_{3}^{2} \quad \quad \begin{aligned}
& \text { Initially }
\end{aligned}
$$

$$
m g h=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{1}{2} m_{2} r^{2} \frac{V_{2}^{2}}{r^{2}}+\frac{1}{2} \frac{1}{2} m_{1} R^{2} \frac{V_{1}^{2}}{R^{2}}
$$

$$
m g h=\frac{1}{2} m v^{2}+\frac{1}{4} m_{2} 4 v^{2}+\frac{1}{4} m_{1} 4 v^{2}=\left[\frac{1}{2} m+m_{2}+m_{1}\right] v^{2}
$$

$$
V^{2}=\frac{m g h}{1}=\frac{(3)(9.8)(0.4)}{2.9(\mathrm{M} / \mathrm{s})^{2}}
$$

$$
\left[\frac{1}{2} m+M_{2}+M_{2}\right] \frac{\left[\left(\frac{1}{2}\right) 3+0.5+2\right]}{2 M /}
$$

Problem 13 (12 pts):
A right-triangular sheet of metal with sides of length 3 meters and 4 meters, as shown in the sketch, balances on a narrow support placed at a distance x_{o} from the left side of the triangle as shown in the sketch. (The force of gravity is pointed down on the paper.) If the mass of the triangle is M and it has a uniform density, determine x_{0}.

$d m=$ mass of sliver $d x$ at position x

$=$ (Area mass density $)(d A)$

$$
d M=\frac{M}{6} \frac{4}{3}(3-x) d x
$$

Triangle will balance when x_{0} is $x_{\text {center-of-mass }}$

$$
\begin{aligned}
& x_{C M}=\frac{\int_{0}^{3} x d M}{\int_{0}^{3} d M}=\int_{0}^{3} x \frac{m}{6} \frac{4}{3}(3-x) d x \\
& X_{C M}=\frac{2}{9}\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}\left(3 x-x^{2}\right) d x \\
& X_{0}^{3} \\
& x_{0}=1 \text { Meter }
\end{aligned}
$$

