Last

KE= ±mv² Kinetic Energy of Motion

Energy Conservation

EE: = CONSTANT = SE_F

- Suppose we release a mass *m* from rest a distance *h*₁ above its lowest possible point.
 - What is the maximum speed of the mass and where does this happen?
 - \leftarrow To what height h_2 does it rise on the other side?

- Kinetic+potential energy is conserved since gravity is a conservative force (E = K + U is constant)
- Choose y = 0 at the bottom of the swing, and U = 0 at y = 0 (arbitrary choice)

• $E = \frac{1}{2}mv^2 + mgy$.

 \leftarrow Initially, $y = h_1$ and v = 0, so $E = mgh_1$.

Since E = mgh₁ initially, E = mgh₁ always since energy is conserved.

• $\frac{1}{2}mv^2$ will be maximum at the bottom of the swing. • So at y = 0 $rac{1}{2}mv^2 = mgh_1$ $rac{1}{2}v^2 = 2gh_1$

 $v = \sqrt{2gh_1}$

- Since $E = mgh_1 = \frac{1}{2}mv^2 + mgy$ it is clear that the maximum height on the other side will be at $y = h_1 = h_2$ and v = 0.
- The ball returns to its original height.

 The ball will oscillate back and forth. The limits on its height and speed are a consequence of the sharing of energy between *K* and *U*.

 $E = \frac{1}{2}mv^{2} + mgy = K + U = constant.$

Generalized Work/Energy Theorem:

 $W_{NC} = \Delta K + \Delta U = \Delta E_{mechanical}$

 The change in kinetic+potential energy of a system is equal to the work done on it by non-conservative forces.
E_{mechanical}=K+U of system not conserved!

← If all the forces are conservative, we know that K+U energy is conserved: $\Delta K + \Delta U = \Delta E_{mechanical} = 0$ which says that $W_{NC} = 0$.

← If some non-conservative force (like friction) does work, K+U energy will not be conserved and $W_{NC} = \Delta E$.

Problem: Block Sliding with Friction

- A block slides down a frictionless ramp. Suppose the horizontal (bottom) portion of the track is rough, such that the coefficient of kinetic friction between the block and the track is µ_k.
 - How far, x, does the block go along the bottom portion of the track before stopping?

Problem: Block Sliding with Friction...

- Using $W_{NC} = \Delta K + \Delta U$
- As before, $\Delta U = -mgd$
- W_{NC} = work done by friction = - $\mu_k mgx$.
- $\Delta K = 0$ since the block starts out and ends up at rest.
- $W_{NC} = \Delta U \qquad \Box \qquad -\mu_k mgx = -mgd$

if compress $\vec{F} = -k \vec{X}$ $F = -k \vec{X}$ x Ňo x-x0

+

H

•

 $W = (x_2 - X_i) F_{\text{Spring}}$ $\int_{z_1 - x_2}^{z_2 - x_1} F_{\text{Spring}}$ $\int_{z_1 - x_2}^{z_2 - x_2} F_{\text{Spring}}$ 7

$$d\omega = k(x-x_0) dx$$
$$W = \int_{x_1}^{x_2} \vec{F} \cdot d\vec{x}$$