Physics 113-October 15,2013

- Exams available for pickup outside my office
- Regrades - happening

Blouse make sure you understand the problem/solins before you ask for a regrade

$$
\begin{aligned}
& \text { Work }=\int_{i}^{f} \vec{F} \cdot \overrightarrow{d s} \\
& \quad \operatorname{dot} \text { praluct } \\
& \xrightarrow[B]{A} \vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta \\
& A_{x} B_{x}+A_{y} B_{y}+A_{B} B_{z}
\end{aligned}
$$

Kinetic Energy $K E=\frac{1}{2} m v^{2}$ of motion

(1)

(D)

Does no T Matter

$$
m g h=\frac{1}{2} \mu v^{2}
$$

Energy Conservation

$$
\begin{aligned}
\Sigma E_{i} & =\text { constant } \\
& =\Sigma E_{f}
\end{aligned}
$$

Example: The simple pendulum

- Suppose we release a mass m from rest a distance h_{1} above its lowest possible point.
\leftarrow What is the maximum speed of the mass and where does this happen?
\leftarrow To what height h_{2} does it rise on the other side?

Example: The simple pendulum

- Kinetic+potential energy is conserved since gravity is a conservative force ($E=K+U$ is constant)
- Choose $y=0$ at the bottom of the swing, and $U=0$ at $y=0$ (arbitrary choice)

$$
E=1 / 2 m v^{2}+m g y
$$

Example: The simple pendulum

- $E=1 / 2 m v^{2}+m g y$.
\leftarrow Initially, $y=h_{1}$ and $v=0$, so $E=m g h_{1}$.
\leftarrow Since $E=m g h_{1}$ initially, $E=m g h_{1}$ always since energy is conserved.

Example: The simple pendulum

- $1 / 2 m v^{2}$ will be maximum at the bottom of the swing.
- So at $y=0 \quad \Rightarrow 1 / 2 m v^{2}=m g h_{1} \quad \Rightarrow v^{2}=2 g h_{1}$

$$
v=\sqrt{2 g h_{1}}
$$

Example: The simple pendulum

- Since $E=m g h_{1}=1 / 2 m v^{2}+m g y$ it is clear that the maximum height on the other side will be at $y=h_{1}=h_{2}$ and $v=0$.
- The ball returns to its original height.

Example: The simple pendulum

- The ball will oscillate back and forth. The limits on its height and speed are a consequence of the sharing of energy between K and U.
$E=1 / 2 m v^{2}+m g y=K+U=$ constant .

Generalized Work/Energy Theorem:

$$
W_{N C}=\Delta K+\Delta U=\Delta E_{\text {mechanical }}
$$

- The change in kinetic+potential energy of a system is equal to the work done on it by non-conservative forces. $\mathrm{E}_{\text {mechanical }}=\mathrm{K}+\mathrm{U}$ of system not conserved!
\&-If all the forces are conservative, we know that $\mathrm{K}+\mathrm{U}$ energy is conserved: $\Delta K+\Delta U=\Delta E_{\text {mechanical }}=0$ which says that $W_{N C}=0$.
<-If some non-conservative force (like friction) does work, $\mathrm{K}+\mathrm{U}$ energy will not be conserved and $W_{N C}=\Delta E$.

Problem: Block Sliding with Friction

- A block slides down a frictionless ramp. Suppose the horizontal (bottom) portion of the track is rough, such that the coefficient of kinetic friction between the block and the track is μ_{k}.
\leftarrow How far, x, does the block go along the bottom portion of the track before stopping?

Problem: Block Sliding with Friction...

- Using $W_{N C}=\Delta K+\Delta U$
- As before, $\Delta U=-m g d$
- $W_{N C}=$ work done by friction $=-\mu_{k} m g x$.
- $\Delta K=0$ since the block starts out and ends up at rest.
- $W_{N C}=\Delta U \quad \Rightarrow \quad-\mu_{\mathrm{k}} m g x=-m g d$

Energy lost to friction Work done on object by friction $\operatorname{mg} \mu_{k} X$

$$
\begin{aligned}
& \operatorname{mad}=\mu_{1_{2}} \operatorname{mg} x \\
& x=d / \mu_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if compross } \\
& \xrightarrow[\vec{x}_{D}]{M O} \vec{F}=-k \vec{x} \\
& F=-k x
\end{aligned}
$$

$$
C=H
$$

$$
w=\left(x_{2}-x_{1}\right){\underset{l}{\text { spring }}}^{\text {F }}
$$

$$
\begin{aligned}
& d w=k\left(x-x_{0}\right) d x \\
& W=\int_{x_{1}}^{x_{2}} \stackrel{F}{F} \cdot d \vec{x}
\end{aligned}
$$

