
A)

$$
\begin{aligned}
& I_{i}=\frac{1}{2} M R^{2} \quad \omega_{i}=0.95 \mathrm{red} / 3 \quad \text { Solutions to PS } 10 \\
& I_{f}=\frac{1}{2} M R^{2}+m R^{2} \\
& \prod \quad \omega_{f R R E N}=\frac{\frac{1}{2} M R^{2}}{\frac{1}{2} M R^{2}+m R^{2}}(0.95 \mathrm{rad} / \mathrm{s})
\end{aligned}
$$

$$
\omega_{f}=0.55 \mathrm{rad} / \mathrm{s}
$$

B)

$$
\begin{aligned}
& K \varepsilon_{i}=\frac{1}{2} I_{i} \omega_{l}^{2}=\frac{1}{4} M R^{2} \omega_{j}^{2}=4205 \\
& K r_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}+m R^{2}\right) \omega_{f}^{2}=2405
\end{aligned}
$$

$11-221$
A)

(B)


D) $\overbrace{\vec{B}}^{\vec{A}} \vec{A} \times \vec{B}=0$
A)

$$
\begin{aligned}
& L=L_{\text {paulay }}+L_{A}+L_{B} \\
& =I_{\text {Punurat }^{\left(\omega_{\text {Pulvic }}\right.}}+M_{A} \vee R_{0}+M_{B} \vee R_{0} \\
& \text { ( } L=m v r \text { ) } \\
& \uparrow \text { Prapintencar } \\
& \text { fror viluger } \\
& \omega_{\text {pruay }}=\frac{V}{R_{0}} \\
& L=\frac{I_{P} V}{R_{0}}+M_{A} R_{0} V+M_{B} R_{0} V \\
& L=M_{a_{2}} V\left[\frac{I_{p}}{R_{0}}+M_{A} R_{0}+M_{B} R_{0}\right\}
\end{aligned}
$$

B) Tou concis usa FRrig Body Ditagrams and NVIMTONS SRCOND CAW ( $\Sigma \vec{F}=m \vec{a}, \Sigma, \tau=I_{\alpha}$ )

To GRT THIS. BUT urk Also know Th AT

$$
\Sigma \vec{\tau}=\frac{d \vec{l}}{d t}=\text { ANT THAT CIRAVETS }
$$

Is mare oncy inxtrizmal forch (and therrovere ser itur oncy fixtrienst tarcur).
so

$$
\begin{aligned}
\Sigma_{\tau} & =m_{B} g R_{0}=\frac{d}{d t}\left[V\left(\frac{I}{R_{0}}+R_{0}\left(m_{A}+m_{B}\right)\right)\right] \\
& =a\left(\frac{I}{R_{0}}+R_{0}\left(M_{A}+m_{B}\right)\right) \\
& \Rightarrow a=\frac{m_{B} g}{\frac{I}{R_{0}}+m_{A}+M_{B}}
\end{aligned}
$$


11.53

$$
I=8.3 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& \Omega=\frac{M g r}{I \omega} \text { (From RAGRE 2q9) }
\end{aligned}
$$

$$
\begin{aligned}
& L_{i}=M_{\text {BuLRTT }} V_{0}\left(\frac{1}{4} l\right) \\
& L_{f}=I_{\text {srsech }} \omega+M_{\text {Bncui }} V_{f}\left(\frac{1}{4} \ell\right) \quad L_{i}=L_{f} \\
& M_{\text {Buclat }} V_{0}\left(\frac{1}{4} l\right)=I_{\text {stace }} \omega+m_{\text {bruet }} V_{f}\left(\frac{1}{4} l\right) \\
& \omega=\frac{m_{\text {Buckit }} l}{4 I}\left(v_{0}-v_{f}\right)=\frac{m_{\text {Bmact }} l}{4\left(\frac{1}{12} m_{\text {stac }} l^{2}\right)}\left(v_{0}-v_{f}\right. \\
& \omega=3.7 \mathrm{red} / \mathrm{s}
\end{aligned}
$$

$|1-7|$
(c) Front view

pingot ponit is contact puent ON GROWND Thus TORQLR RESucts from mg
torquar diraction is
, AND so is $\Delta \vec{\omega}$ 's.
The whrel wall thrn totuk Ricont
(b) $\vec{\tau}=\vec{r} \times \vec{F}=(0.32 \mathrm{~m})(8 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s}) \sin (\theta)=5.3 \mathrm{Nem}$

$$
\text { su } \Delta L=\tau \Delta t=(5.3 \mathrm{~N} . \mathrm{m})(0.2 \mathrm{~s})=1.1^{\mathrm{kg}^{m^{3}}} \frac{5}{5}=\Delta L
$$

Ther orIcIINAL $L=I \omega \quad \omega=\frac{V}{r}=\frac{21 \mathrm{n} / \mathrm{s}}{0.32 \mathrm{~m}}=6.25 \mathrm{red} / \mathrm{s}$

$$
L=\left(0.83 \mathrm{kgn}^{2}\right)(6.25 \mathrm{rat} / \mathrm{s})=15.2 \mathrm{~kg} \mathrm{c}^{2} / \mathrm{s}=L .
$$

Thow $\frac{\Delta L}{L}=\frac{1.1}{5.2}=0.2$ or $20 \%$

$$
\begin{aligned}
& 11-74 \\
& L_{\text {SPAN }}=I_{\omega}=\frac{2}{5} m r^{2} \omega_{\text {STAN }}=\frac{2}{5} m r^{2} \omega \quad \text { ( } r=\text { recinc of mova }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{L_{\text {SPWN }}}{L_{\text {STHit }}}=\frac{\frac{2}{5} m r^{2} \omega}{m R_{\text {orbit }}^{2} \omega}=\frac{2}{5} \frac{r^{2}}{R_{\text {oR35 }}}=8.2 \times 10^{-6} \\
& L_{\text {ORBET }} \gg L_{\text {SPIA }}
\end{aligned}
$$

 The warrewounce is cosst be the waike
(A)

$$
\begin{aligned}
& \Delta L_{W M}=-\Delta L_{W A T}=L_{W A_{i}}-L_{W A T_{t}}=m v_{1} R-n v_{2} R \\
& \frac{\Delta L_{w M}}{\Delta t}=\frac{m v_{1} R-m v_{2} R}{\Delta t}=\frac{m R}{\Delta t}\left(v_{1}-v_{2}\right)=816 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

(B) $\tau=\frac{\Delta t}{\Delta t} \rightarrow \tau=816 \operatorname{minN}$
(c) $P=t \omega=(816 \mathrm{~N} \cdot \mathrm{~m})\left(\frac{2 \text { trav }}{5.5 \mathrm{~s}}\right)=1830 \mathrm{~W}$
(A) If $\Delta L=0$ Tandr $I_{i}=L_{f} \rightarrow I_{e} \omega_{i}=I_{f} \omega_{f}$

$$
\begin{aligned}
& \left(\frac{2}{5} 8 M_{\sin } R_{\sin }^{2}\right) \omega_{i}=\left(\frac{2}{5} 2 M_{\sin } R_{f}^{2}\right) \omega_{f} \\
& \omega_{f}=\frac{\frac{2}{5} \cdot 8 M_{\sin } R_{\sin }^{2}}{\frac{2}{5} \cdot 2 M_{\sin } R_{f}^{2}} \omega_{i} \quad \Rightarrow \omega_{f}=17,000 \frac{\mathrm{rcu}}{\mathrm{~s}}
\end{aligned}
$$

(b) Ther $\frac{3}{4}$ of tave mass trat cfankes also CARRERS AWAT $\frac{3}{4}$ of Tore ANG. Momintim. SAnck $L \propto \omega \quad$ wh lenow tortt

$$
\omega_{f}=\frac{1}{4}(17,000)=4300 \frac{\mathrm{rev}}{\mathrm{~s}}
$$

12-2 DRAW A FRER BODT DSAGRAM


Now SUM THE TORQUES ABOUT THE JOINT

$$
\begin{aligned}
\Sigma_{\tau}=0 & =F_{m} d-m g D-M g L \\
F_{m} & =\left(\frac{m D+M L}{d}\right) g=970 \mathrm{~N}
\end{aligned}
$$

(a) $12-5\left({ }_{1}^{F_{A}} \operatorname{leg}^{F_{B}}\right.$

$$
\begin{aligned}
& \begin{array}{r}
\text { )t (IGNORENG whachit of } \\
\text { BOARD }
\end{array} \\
& \text { BOARD } \\
& \text { sum rorcers } \angle F=F_{A}+F_{B}-m g=0
\end{aligned}
$$

sum TORQURS ABOLT A (B wand ALSo NoRK!)

$$
\begin{gathered}
Z \tau=F B l_{B}-m g l=0 \quad \text { (Assumg unikNom TorRQuls) } \\
F_{B}=\frac{m a l}{l_{B}}=2080 \mathrm{~N} \text { up POSETVRE; }
\end{gathered}
$$

Now und THITS Fr

$$
\begin{aligned}
& F_{A}+F_{B}-m g=0 \\
& F_{A}=m g-F_{B}=-1560 \mathrm{~N}=F_{A}
\end{aligned}
$$



$$
\Sigma_{l} F=F_{A}+F_{B}-m_{B g}-m g=0
$$

sum TORGWis ABOLT A

$$
\begin{aligned}
& \varepsilon_{1} \tau=F_{B} l_{B}-m_{b} g\left(\frac{l}{2}\right)-m g l=0 \\
& \quad F_{b}=\frac{m_{b} g\left(\frac{l}{2}\right)+m_{g} l}{l_{B}}=2640 \mathrm{~N}=F_{B}
\end{aligned}
$$

AND

$$
F_{A}=m_{b} 9+m g-F_{B}=-1840 N=F_{A}
$$

$12-7$

A)

$$
\begin{aligned}
\theta=\arctan \left(\frac{1.5 m}{3.3 m}\right) & =24.4^{\circ} \\
\sum_{1} F_{X}=0 \quad \xi_{y} f_{y} & =2 T \sin \theta-m g=0 \\
& T=\frac{m g}{2 \sin \theta} \quad T=230 \mathrm{~N}
\end{aligned}
$$

B)

$$
\begin{aligned}
& \theta=\arctan \left(\frac{0.15}{3.3 n}\right)=26^{\circ} \\
& T=\frac{m g}{2 \sin \theta}=2050 \mathrm{~N}
\end{aligned}
$$

$12-14$

sum TORQWis ABCOT LFET END $\left(F_{1}\right)$

$$
\begin{aligned}
& \Sigma_{1}=-F_{\text {coek coak }}+F_{2} l_{\text {ead }}=0 \\
& F_{2}=\frac{F_{\text {conk }} l_{\text {conk }}}{l_{\text {end }}}=\frac{9}{79}(200 \mathrm{~N}) \\
& \text { or } \frac{9}{79}(400 \mathrm{~N}) \\
& F_{2}=23 \mathrm{~N} \text { to } 46 \mathrm{~N}
\end{aligned}
$$

|2-18|


$$
\begin{gathered}
\Sigma_{.} \tau=0=m_{B} g \frac{L}{2}+m_{C} g x-m_{A} g \frac{L}{2}=0 \\
x=\frac{L}{2} \frac{\left(m_{A} g-m_{B} g\right)}{m_{C} g} \quad x=\frac{L\left(m_{A}-m_{B}\right)}{2 m_{C}} \\
x=0.64 m
\end{gathered}
$$

$12-27$
A)

B) EQUILEBRIーM $\rightarrow \sum F_{y}=0, \sum F_{Y}=0, \varepsilon_{i \tau}=0$ so

$$
\begin{gathered}
\Sigma F_{X}=T \sin \phi-F_{H_{H}}=0 \\
F_{H_{H}}=(85 N) \sin \left(37^{\circ}\right)=551 \mathrm{~N} \\
\Sigma F_{y}=T \cos \phi+F_{H_{V}}-m g-W=0 \\
F_{H V}=m g+W-T \cos \phi \\
F_{H V}=-9 N
\end{gathered}
$$

 Forck from thre minshe Actually points Downward!
(C)

$$
\begin{aligned}
& \sum_{i} \tau=W d \sin \theta+m g \frac{l}{2} \sin \theta-T l \sin (\theta-\phi) \\
& d=\frac{T l \sin \left(16^{\circ}\right)-m g \frac{l}{2} \sin 53^{\circ}}{W \sin 53^{\circ}} \quad 1 d=2.4 m
\end{aligned}
$$

havr to Assuma turer Is no FRICTION! OTHRBLUIER YOU DONT HANE EnNowh INTO.
A)


If we takg twe Moment that thr cousion cobis contact werre the Flat parti of tha FLoor, wh Ju>t mersid TO balancer the torgand dua To $f$ and mg.
$N$ CONTREBUTRS NO TORQUK As It is at the pivot potnt

$$
\begin{aligned}
& \Sigma_{\tau} \tau=F(2 R-h)-\operatorname{mg} x=0
\end{aligned}
$$

$$
\begin{aligned}
& F=\frac{m g(\sqrt{h(2 R-h)})}{2 R-h}
\end{aligned}
$$

B) Samer drat, but now $\vec{F}$ acts at a prerendicmar DESTASLE of R-h

$$
\begin{gathered}
\Sigma_{i} \tau=0=F(R-h)-m g \sqrt{h(2 R-h)}=0 \\
F=\frac{m g \sqrt{h(2 R-h)}}{R-h}=
\end{gathered}
$$

