1325

$$
\begin{aligned}
& m=89.22 \mathrm{~g}-35 \mathrm{~g}=54.22 \mathrm{~g} \\
& m_{\text {marar }}=98.44-35 \mathrm{~g}=64.44 \mathrm{~g} \\
& \text { so s.0. }=\frac{54.22 \mathrm{~g}}{64.44 \mathrm{~g}}=0.84
\end{aligned}
$$

|3-15|

$$
\begin{aligned}
& \text { (A) } P=P_{0}+\rho g h=1.013 \times 10^{5 \mathrm{~N} / \mathrm{m}^{2}}+\left(1000 \frac{\mathrm{~kg}}{\mathrm{mp}}\right)\left(10^{\mathrm{m} / \mathrm{s}^{2}}\right)(1.8 \mathrm{~m}) \\
& P=1.19 \times 10^{5 \mathrm{~N} / \mathrm{m}^{2}} \\
&\left.F=P . A=1.19 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)(28 \mathrm{~m} \cdot 8.5 \mathrm{~m})=2.8 \times 10^{7} \mathrm{~N}=F
\end{aligned}
$$

(B) At Thre bottom The pressurre on Thate SIDE IS Ture SAMve AS ON THR Bottom,
13.181
(a)

$$
\begin{aligned}
\text { mass }= & \pi r^{2} \mathrm{~h} \rho=\pi(0.003 \mathrm{~m})^{2}(12 \mathrm{~m})(1000 \mathrm{~kg} / \mathrm{mg}) \\
& m=0.34 \mathrm{~kg}
\end{aligned}
$$

(b)

$$
\begin{gathered}
P=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(10^{\mathrm{n} / \mathrm{z}}\right)(12 \mathrm{~m})=120,000 \mathrm{~Pa}_{a} \\
F=P \cdot A=\left(120,000 \mathrm{~N} / \mathrm{m}^{2}\right)\left(\pi \cdot(0.21 \mathrm{~m})^{2}\right)=1.7 \times 10^{4} \mathrm{~N} \\
U F=1.7 \times 10^{4} \mathrm{~N}
\end{gathered}
$$

$13-27$
Ther cmandir in whecrtet is Duk to ther Bouyancy Forcre, whicer is rgual to Ther mass of Twr DISPCACRD WATER Timas ig

$$
\begin{aligned}
& \rightarrow\left(m_{\text {actuar }}\right) g-\left(m_{\text {appucrent }}\right) g=m_{\substack{\text { writan } \\
\text { aspurap }}} g \\
& \text { so } \\
& m_{\text {ACT. }}-m_{\text {APP }}=m_{\text {WD }}=\rho_{\text {WAMn }} V_{\text {ROCK }} \\
& \bigcap_{\text {watrei }} \cdot V_{\text {Rock }}
\end{aligned}
$$

But $V_{\text {Rock }}=\frac{M_{\text {ACT }}}{\rho_{\text {rock }}}$
so

$$
\begin{gathered}
\rho_{\text {Rock }}=\rho_{\text {IAARRS }}\left(\frac{M_{\text {ACT }}}{M_{\text {ACT }}-M_{\text {APP }}}\right) \\
=\left(1 \times 10^{3} \mathrm{~kg} / \mathrm{ms}\right)\left(\frac{9.28 \mathrm{~kg}}{9.28 \mathrm{~kg}-6.18 \mathrm{~kg}}\right)=2990 \mathrm{~kg} / \mathrm{ms}
\end{gathered}
$$

FOR THE DRUM TO FLOAT ITS TOTAL Wriachetr must Bre liss Tan the Boyarcy forck.

10-39 [NVCaLRCT TuR Mass of The BALCOONS (oncy consisian the mass of then harecium)

$$
\Sigma_{i} F_{y}=F_{b}-m g-m_{b} g=0
$$

$$
\bar{r}_{b}-m g=m_{b} g
$$

wricher of Hfitern.

Bur $F_{b}=n \rho_{\text {are }} V g$ arrs $M_{b}=n \rho_{\text {He }} V$
\# of
ralcoors

$$
\begin{aligned}
& V=\operatorname{VanmR} \text { or }{ }^{\text {Batcoons }} \text { ' }
\end{aligned}
$$

so

$$
\begin{aligned}
& { }^{n \rho_{A Z R} V g-m g}=-n \rho_{H C} V g \\
& n\left(\rho_{A Z R}-\rho_{H e}\right) V=m \Rightarrow n=\frac{m}{\left(\rho_{A C R R}-\rho_{M C}\right) V} \\
& n=3588 \quad \text { BALLOONC }
\end{aligned}
$$

$$
\begin{aligned}
& F_{B}=\rho_{W} V_{\text {DRUM }} g=w_{\text {steed }}+w_{\text {ges }} \\
& \rho_{\text {gut }}\left(V_{\text {stea }}+V_{\text {gass }}\right) g=V_{\text {steal }} \rho_{\text {steal }} g+V_{g_{\text {as }} \rho \rho_{\text {gas }}} g \\
& V_{\text {citini }}=V_{g a s}\left(\frac{\rho_{\omega}-\rho_{\text {ges }}}{\rho_{\text {steai }}-\rho_{\omega}}\right)=(2302)\left(\frac{1000 \mathrm{kghm}^{3}-680 \mathrm{~kg} / \mathrm{m}^{3}}{7800^{\mathrm{kg} / \mathrm{m}} \mathrm{~m}-1000 \mathrm{~kg} / \mathrm{m} 3}\right) \\
& V_{\text {STRAL }}=1.1 \times 10^{-2} \mathrm{~m}^{3}
\end{aligned}
$$

13-47 (ARGFLL terare, You NREDN'T THINK ABOUT THE PRNDRLLM AS AN OSCILLATOR TO DO Thás PROTRLKM. All you NRRD To Do is conserure finsurciy

so

$$
\begin{gathered}
\frac{1}{2} \text { myy }_{\text {max }}^{2}=m g h_{\text {max }}=r g l(1-\cos \theta) \\
V_{\text {max }}=\sqrt{2 g l(1-\cos \theta)}
\end{gathered}
$$

13.49/usie Biarnoullia Bac

$$
P_{\text {ABowr }}+\frac{1}{2} \rho v^{2}=P_{\text {trsid }}
$$

$$
P_{\text {InSaDiL }}-P_{\text {ABOVE }}=\frac{1}{2} \rho v^{2}
$$

TuEN, Forcer on roof is

$$
F=\left(P_{\text {Tnsiox }}-P_{\text {unssida }}\right) A=\frac{1}{2} \rho v^{2} A
$$

$$
\begin{aligned}
& E F_{y}=F-m g=0 \\
& \text { (MinImiom F to } \\
& \text { LEFT THE RGOF) } \\
& \rightarrow F=m g \\
& \frac{1}{2} \rho v^{2} A=m g=\text { wrecofet }
\end{aligned}
$$

$$
\begin{aligned}
& =1.2 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

13.54 WATER IS INCOMPRRSSEDCE SO whe cas usa THR consinlist EQ.

$$
\begin{array}{r}
A_{1} v_{1}=A_{2} V_{2} \rightarrow \pi r_{1}^{2} V_{1}=\pi r_{2}^{2} v_{2} \rightarrow V_{2}=\frac{R_{1}^{2}}{R_{2}^{2}} V_{1} \\
V_{2}=2.2 \mathrm{~m} / \mathrm{s}
\end{array}
$$

FOR PRESSURE, USE BARNOULLI EQUATEN.

$$
\begin{aligned}
& P_{1}+\frac{t}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2} \\
& P_{2}=P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}-\frac{1}{2} \rho v_{2}^{2}-\rho g y_{2} \\
& P_{2}=(3.8)\left(1.013 \times 10^{3} \mathrm{~N} / \mathrm{n}^{2}\right)+\frac{1}{2}\left(1000 \mathrm{ka} / \mathrm{n}^{3}\right)(0.68 \mathrm{r} / \mathrm{s})^{2}+0 \\
& \left.-\frac{1}{2}\left(1000 \mathrm{~kg} / \mathrm{ms}^{3}\right)\left(2.2 \mathrm{r}_{\mathrm{s}}\right)^{2}-(1000 \mathrm{~kg} / \mathrm{m})\right)\left(10 \mathrm{r} \mathrm{~s}_{\mathrm{s}}\right)(18 \mathrm{~m}) \\
& D=2.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad(\mathrm{~m} \rightarrow 10 \mathrm{~m})
\end{aligned}
$$

13-951 WHER IS InCOMPRESSIBLIL
so $\quad A_{Y} V_{Y}=A_{0} V_{0}$
$\int_{\rightarrow \rightarrow \infty} \prod_{y}^{y=0}$
Thine $\left(\pi\left(\frac{d}{2}\right)^{2}\right) v_{\phi}=\pi\left(\frac{D}{2}\right)^{2} v_{y}$
so $\nabla^{2}=d^{2} \frac{v_{0}}{v_{y}}$
But wi don't know V_{y}.
WIE CAN FEND IT VIA BRRNOULI ECO

$$
\begin{gathered}
P_{0}+\frac{1}{2} \rho v_{0}^{2}+\rho g y_{0}=P_{0}+\frac{1}{2} \rho v_{y}^{2}+\rho g y_{0} \\
v_{y}^{2}=v_{0}^{2}+2 g y_{0}-2 g y_{0} \\
v_{y}=\sqrt{v_{0}^{2}+2 g\left(y_{0}-y\right)}
\end{gathered}
$$

su

$$
D^{2}=d^{2} \frac{v_{0}}{\sqrt{v_{0}^{2}+2 g\left(y_{0}-y\right)}}
$$

उपन $y 0=0$ sin $\left(y_{0}-y\right)=y$

$$
\sqrt{D=d \sqrt{-\frac{v_{0}}{\left(v_{0}{ }^{2}+2_{9 y}\right)^{1 / 2}}}, \text {. }}
$$

$14-13 \mid$
(b)
(a) For $A: A=2.5 \mathrm{~m}$
(c) A: $T=4 \mathrm{~s}$
$f=\frac{1}{25}=G_{25} \mathrm{~Hz}_{7}$
FORB: $A=3.5 \mathrm{~m}$
Bi $T=2 S \quad f=\frac{1}{2 s}=0.5 \mathrm{~Hz}$
(d) Fore as $x(0)=0 ; \quad x(15)=2.5 \mathrm{~m}$
so $\quad x(t)=(2.5 n) \cos \left((0.25 \mathrm{~Hz}) 2 \pi t-\frac{\pi}{2}\right)$
For B: $x(0)=355^{m}$ And $x(0.53)=0$
so $\quad x(t)=(3.5 m) \cos ((0.5 \mathrm{~Hz}) 2 \pi t)$
$14.18(f=441 \mathrm{~Hz}, \quad A=1.5 \mathrm{~mm}$

$$
\omega=2 \pi(441)=
$$

(a) so, $x(t)=(1.5 \mathrm{mn}) \cos (2 \pi(4+1) t+\phi)$

$$
V(t)=\frac{d x}{d t}=-(2 \pi)(441)(1.5 \mathrm{mn}) \sin (2 \pi(1411) t+\phi)
$$

Thad $V_{\text {max }}=(2 \pi)(441 / \mathrm{s})(1.5 \mathrm{mn})=4200 \mathrm{~mm} / \mathrm{s}$

$$
v_{\text {max }}=4.2 \mathrm{~m} / \mathrm{s}
$$

(b) $a(t)=\frac{d^{2} y}{d t^{2}}=-(2 \pi)^{2}(441)^{2}(1.5) \cos (2 \pi(441) t+\phi)$

AND $a_{\text {max }}=(2 \pi)^{2}(44 .)^{2}(1.5)=1.2 \times 10^{7} \mathrm{ma/s}$

$$
a_{m \times x}=1.2 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

\downarrow_{x} (trust m\&i)

$$
\sum_{F_{x}}=-2 k x+m g=m a=m \frac{d^{2} x}{d t^{2}}
$$

SO, isolatinn terms containenh x wherat

$$
\begin{aligned}
m g & =m \frac{1^{2} x}{d t^{2}}+2 k x \\
\rightarrow & \frac{d^{2} x}{d t^{2}}+\frac{2 k}{n} x=g
\end{aligned}
$$

Tbrcalash there ricoht ssom is not zerro, ThIS IS AN "INHOMOCRENROLS"' DIffrinfentiahl eqlation.
But Thes Doresn't Contarg W, ONLY Thit FQGLILEBRIUN Position.

$$
\text { su } \left.\omega^{2}=\frac{2 k}{m} \rightarrow \right\rvert\, \omega=\sqrt{\frac{2 k}{m}}
$$

SAme AS IT Woucd isk If Whe KAD GNTE SPRENG WITLI Constant $2 k$
$14-41$
Proriod fs Gafrit by

$$
T=\frac{2 \pi}{\omega}=2 \pi \cdot \sqrt{\frac{l}{g}}
$$

so on raprth

$$
T_{\phi}^{T H}=2 \pi \sqrt{\frac{l}{g_{\theta}}}
$$

ANTD ON MARS

$$
T_{\text {mans }}=2 \pi \sqrt{\frac{l}{g_{\text {mans }}}}
$$

THEN,

$$
\frac{T_{\text {mars }}}{T_{\theta}}=\frac{2 \pi \sqrt{\frac{l}{g_{\text {qars }}}}}{2 \pi \sqrt{\frac{l}{g_{\phi}}}}=\sqrt{\frac{g_{\varphi}}{g_{\text {mers }}}}
$$

Peunds $T_{\text {rers }}=T_{\theta} \sqrt{\frac{g_{0}}{g_{\text {mars }}}}=(1.35 s) \sqrt{\frac{9}{0.379}}$

$$
T_{m u s}=2.2 \mathrm{~s}
$$

14-43 (wre can tack the prikisfr Trule ast=0 Thor, ASSCMFNG, SImple HARMONIC MOTLON WE Have An Eecutions for $\theta \Leftrightarrow=\theta_{0} \cos (\omega t)$
$3013^{\circ} \tau^{\circ} \hat{\imath} \sqrt{\frac{9}{8}}$
(A) $\theta\left(t=0.353^{3}\right)=\left(13^{\circ}\right) \cos \left(\sqrt{\frac{5}{0.3 n}} \cdot 0.35 \mathrm{~s}\right)=-5.4^{\circ}$
(B) $\theta(t)=3,455)=\left(13^{\circ}\right) \cos \left(\sqrt{\frac{9}{03 m}} \cdot 3.455\right)=8.4^{\circ}$
(C) $\theta(t=6 \mathrm{~s})=\left(13^{\circ}\right) \cos \left(\sqrt{\frac{9}{0.3 m}} \cdot 6 \mathrm{~s}\right)=-13^{\circ}$
$\underline{15-4} 1 \quad v=\lambda f \rightarrow \lambda=\frac{v}{f}$
So Am

$$
\begin{aligned}
& \frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{550,000 \mathrm{~Hz}} \text { to } \frac{3 \times 10^{8 \mathrm{~m} / \mathrm{s}}}{1600,000 \mathrm{~Hz}} \\
& \lambda_{\mathrm{Am}}=545 \mathrm{~m} \text { to } 188 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
\text { FM } \frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{88 \times 10^{6} \mathrm{~Hz}} \text { to } \frac{3 \times 10^{8} \mathrm{r} / \mathrm{s}}{108 \times 10^{6} \mathrm{~Hz}} \\
\lambda_{F M}=3.4 \mathrm{~m} \text { to } 2.8 \mathrm{~m} \\
15.241 \quad D=(0.22) \sin (5.6 x+34 t)=A \sin (k x+\omega t)
\end{gathered}
$$

(a) $\lambda=\frac{2 \pi}{k} \rightarrow k=5.6$, so $\lambda=1.1 \mathrm{~m}$
(b) $f=\frac{\omega}{2 \pi} \rightarrow \omega=34$, so $f=5.4 \mathrm{~Hz}$
(c) $v=\lambda f=\frac{\omega}{k}=\frac{34}{5.6}=6 \mathrm{v} / \mathrm{s}=v$
wave is travigling in $-x$ Dirbetion.
(d) $A=0.22 \mathrm{~m}$
(e) manimum spfirin is zaro.

$$
V=\frac{\partial D}{\partial t}=(0.22 n)\left(34 \frac{r-t}{3}\right) \cos (5.6 x+34 t)
$$

so $v_{\max }=7.5 \mathrm{~m} / \mathrm{s}$
$15-22$
(A)

$$
\begin{aligned}
& D(x, t)=(0.015 m) \sin (25 x-1200 t) \\
& \text { IS A RIGHT (TOWARD }+x) \text { TRAVELINRA }
\end{aligned}
$$

waur.

TWRN

$$
D^{\prime}(x, t)=(0.015 m) \sin (25 x+1200 t)
$$

Is Ture SAME BLT TRAWRITNG TO THA IRFT (TOWARD $-x$)
(B) Ttre spranis of A wave is chaven bu

$$
V=\frac{\omega}{k}=\frac{1200 \mathrm{rad} / \mathrm{s}}{25 \frac{\mathrm{rcc}}{\mathrm{~m}}}=48 \mathrm{~m} / \mathrm{s}
$$

This fundormintal frraceurincy of 441 Hz coprasponds to a waur of $\lambda=2 l$ so $f_{\text {CNFNTMRR }}=\frac{V}{2 e}$
 mode IS

$$
\begin{aligned}
& f_{\text {fanciaRA }}=\frac{V}{2\left(\frac{2}{3} l\right)}=\left(\frac{3}{2}\right) \frac{V}{2 l}=\frac{3}{2}(441 \mathrm{~Hz}) \\
& f_{\text {FARYRARA }}=662 \mathrm{~Hz}
\end{aligned}
$$

$|5-51|$

thu fundambutal wavrebingita is $\lambda_{1}=2 l$
Thar ferst marmonec waveuncite is $\lambda_{2}=l$
$\lambda_{3}=\frac{2}{3} l$
so $\quad \lambda_{n}=\frac{2 \ell}{n} \quad n=1,2,3 \ldots$
so

$$
f_{n}=\frac{v}{\lambda_{n}}=\frac{\frac{v}{z e}}{2 \epsilon}=\sqrt{\frac{F_{T}}{\mu}}\left(\frac{n}{z e}\right)
$$

