1) 5-3

START By DRANEASL A FRER bo0y docacizam

$$
\begin{gathered}
\mathcal{G}_{y}=N-m g=0 \\
G N=m g \\
\Sigma_{1} F_{x}=F_{\mu}=\mu N=\mu m g=m a \\
\text { so } \mu=\frac{9}{g}=\frac{0.2 g}{g}=0.2
\end{gathered}
$$

2) $5-7$

$$
\begin{aligned}
& \Sigma_{i} F_{x}=m y \sin \theta-F_{\mu}=m a=m g \sin \theta-\mu N \\
& \Sigma_{1} \bar{F}_{y}=N-m g \cos \theta=0 \\
& L_{>}=N=m g \cos \theta
\end{aligned}
$$

Qo THR FORCR or FRICtions Is

$$
\begin{aligned}
& F_{\mu}=m g \sin \theta-m a=(25 \mathrm{~kg})\left(9.8 \mathrm{~m}_{12} \sin 27^{\circ}-0.3 \mathrm{~m}_{8} 2\right) \\
& F_{\mu} \approx 100 \mathrm{~N}
\end{aligned}
$$

AND

$$
F_{\mu}=\mu N=\mu m g \cos \theta \rightarrow \mu=0.48
$$

3) 5-20

I'M loons to DRAW ThR RAMP CZOENG DOWN TO ThFe REGKT (NOThENS WRONG WITM THa! !

Wre must sum thre forctis on facch Block:
A)

$$
\begin{aligned}
& \sum F_{x_{A}}=m_{A} g \sin \theta-T-F_{\mu_{A}}=m_{A} a \\
& \sum F_{Y A}=N_{A}-m_{A} g \cos \theta=0 \rightarrow N_{A}=m_{A} g \cos \theta \\
& G_{\mu_{A}}=\mu_{A} m_{A} g \cos \theta
\end{aligned}
$$

B)

$$
\begin{aligned}
& \sum_{1} F_{X_{B}}=m_{B} g \sin \theta+T-F_{\mu_{B}}=m_{B} a \\
& \sum_{i} F_{Y B}=N_{B}-m_{B} g \cos \theta=0 \longrightarrow N_{B}=m_{B} g \cos \theta \\
& C F_{\mu_{B}}=\mu_{B} m_{B} g \cos \theta
\end{aligned}
$$

substitutinh $F_{\mu_{A}}, F_{\mu_{B}}$ In to There x indutitans caturs

$$
\begin{aligned}
& M_{A} a=m_{A} g \sin \theta-T-\mu_{A} M_{A} g \cos \theta \\
& m_{B} a=m_{B} g \sin \theta+T-\mu_{B} M_{B} g \cos \theta
\end{aligned}
$$

Whe CAN $A B D$ THESt TWO FQLATIONS TO Gat

$$
m_{A} m_{1}+m_{B} a=m_{A} g \sin \theta-T-\mu_{A} m_{A} g \cos \theta+m_{B} g \sin \theta+T-m_{B} B g \cos \theta .
$$

Thes semplifies To

$$
a\left(m_{A}+\mu_{B}\right)=m_{A}\left(g \sin \theta-\mu_{A} g \cos \theta\right)+m_{B}\left(g \sin \theta-\mu_{B} g \cos \theta\right)
$$

So Accrcibmation ts just:

$$
a=\frac{m_{A}\left(g \sin \theta-\mu_{A} g \cos \theta\right)+m_{B}\left(g \sin \theta-\mu_{B} g \cos \theta\right)}{\left(m_{A}+m_{B}\right)}
$$

Pcucicitesci in the numiskers fandes

$$
a \approx 3.1 \mathrm{~m} / \mathrm{s}^{2}
$$

4) $5-321$

$$
\mu=\mu_{s}=\mu_{k}
$$

(a)

The top BLOCK must mave $a=5.2 \mathrm{~m} / \mathrm{s}^{2}$. If IT IS TO NOT SLIDGE

$$
\text { so } \quad \Sigma F_{x}=F_{\mu}=(4 \mathrm{~kg}) g \mu=(4 \mathrm{~kg}) 5.2 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mu=\frac{5.2 \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \approx 0.53
$$

(b) IF $\mu=0.26$

$$
\begin{aligned}
F_{\mu}=\mu N=0.26(4 \mathrm{~kg}) g=10.2 \mathrm{~N} \\
F_{\mu}=m a \Rightarrow a_{0}=\frac{10,2 \mathrm{~N}}{\mathrm{~m}}=2.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(C) acceleration ADDS LIKR. A VECTOR, But ther accelrarations arbearlal so Accelsination of top rizlatzue to botiom $a_{t b}=a_{t}-a_{b}$
\uparrow
Rralativg TO TABLE

$$
\begin{aligned}
& a_{t b}=2.5 \mathrm{~m} / \mathrm{s}^{2}-5.2 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{t b}=-2.7 \mathrm{~m} / \mathrm{s} 2
\end{aligned}
$$

(d) IN (a) TREAT SYSTEM AS ONE BOX WFTH $m=16 \mathrm{~kg}$

$$
\begin{gathered}
F=m a=(16 \mathrm{~kg})\left(5.2 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}=(83.2 \mathrm{~N}) \hat{\imath} \quad \longrightarrow
\end{gathered}
$$

$\frac{5-3 \leq 1}{}$ lcomi.
IN (b) Thara Is A Forctr opposinh thar
 Accrictration Duf to ther FRECTION BET WREN THR BOKGS

In (b) we fonnt that thk TOP BOX ACCKLFRATRD AT $2.5 \mathrm{~m} / \mathrm{s}^{2}$ so

$$
\left|F_{k}\right|=(4 \mathrm{~kg})\left(2.57_{s^{2}}\right)=10 \mathrm{~N}
$$

THIS IS THEN THE MACPNITUDE of FK (BY TMIRD LAN) IN ThI FBD ABOVE

$$
\sum_{\Delta} F_{x}=F-F_{k}=m a_{x}
$$

$$
\vec{F}=(12 \mathrm{~kg})\left(5.2 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\imath}+10 \mathrm{~N} \hat{\imath}=72.4 \mathrm{~N} \hat{\imath}
$$

5) 5-34 FrICTION MUST PROUIDR ALL of the CEnTrIpetal forca

$$
\text { so } \quad \mu N=m \frac{v^{2}}{r} \rightarrow v=\sqrt{\frac{\mu N r}{m}}=\sqrt{\mu g r}
$$

$$
\mu=0.65
$$

$$
\begin{aligned}
& \mu=0.65 \\
& N=m g(m=1200 \mathrm{~kg}, g=-9.8 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

$$
N=11,760 \mathrm{~N}
$$

$r=80 \mathrm{~m}$

$$
\begin{aligned}
& V=\sqrt{(0.65)(9.8 \mathrm{~m} / \mathrm{s})(80 \mathrm{~m})} \\
& V=\sqrt{509.6}=22.6 \mathrm{~m} / \mathrm{s}=V
\end{aligned}
$$

6) 5-40/ AT THE TOP OF The CERCLE Thery must bie Accflliratina AT LRAST $9.8 \mathrm{~m} / \mathrm{s}^{2}$ DOWNWARB. So $F_{c} \geqslant m g$

$$
\begin{array}{r}
m \frac{v^{2}}{r} \geqslant m g \quad v^{2} \geqslant g r \\
\\
v \geqslant 8.6 \mathrm{v} / \mathrm{s} \quad
\end{array}
$$

7) 5.42 SIMILAR To PROBEM 5.34

$$
\begin{gathered}
\mu N=\mu m g=\frac{m v^{2}}{r} \\
\mu=\frac{v^{2}}{g^{r}}
\end{gathered}
$$

$$
\begin{aligned}
& v=95 \mathrm{~km} / \mathrm{hr}(=26.4 \mathrm{~m} / \mathrm{s}) \\
& r=85 \mathrm{~m}
\end{aligned}
$$

$$
\mu=\frac{(26.4 \mathrm{~m} / \mathrm{s})^{2}}{(85 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \approx 0.8 \approx \mu
$$

8) 5-521

THE only forcer present
 Is GRAVITY (ANS some Normal forcer) so Gravity must Rrouedr The $\sqrt{2}$ CENTRIPETAL ACC FICKRAT That holds the car Down ins the circular SECHMrart.

As. That car travizrsis THEIS SEGM保T THOUGH There forcer of Gravity starts As pomstana toward The Chanter of the circle AND Ends me pointing a the central

(2)

AT (2) THITRATHORE,

$$
\therefore \underbrace{x 0}_{900}
$$

Couth e mics

$$
\begin{gathered}
m \frac{v^{2}}{r}=m g \cos \left(22^{-}\right) \\
r=\frac{v^{2}}{g \cos \left(22^{-}\right)}=\frac{(26.4 m /)^{2}}{\left(9,8^{4} \gamma_{2}\right) \cos \left(22^{\circ}\right)} \\
r=76.7 \mathrm{~m}
\end{gathered}
$$

9) $5-831$

$$
\begin{aligned}
& F_{c}=m \frac{v^{2}}{r}=7.45 \mathrm{mg} \\
& P=\text { 8 }^{2} V=\sqrt{7.45\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(11 \mathrm{~m})} \\
& V=\sqrt{803 \mathrm{~m}^{2} / \mathrm{s}^{2}} \approx 28.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
f=\frac{22 \pi}{} f=\frac{v}{2 \pi r}=\frac{28.4 \mathrm{~m} / \mathrm{s}}{2 \pi(11 \mathrm{~m})}
$$

$$
f \approx 0.4 \frac{\mathrm{rev}}{\mathrm{~s}}
$$

(10) 5-8 7 THINK OF THIS AS AN INCLENKS PLANFI PROBLIZM. THV TRICIL IS UNDERSANDHY WHY THEL PLANE ANGLE $S Q$

TMEN, TO PREVENT SLfe

$$
\begin{aligned}
& \Sigma_{1} F_{x}=m g \sin \varphi-F_{\mu}=0 \\
& F_{\mu}=\mu N=\mu m g \cos \varphi
\end{aligned}
$$

So $m g \sin Q=\mu m g \cos \varphi$

$$
\mu=\tan \varphi
$$

$$
\varphi(
$$

tan $\varphi=\arctan \mu$

$$
\varphi=\arctan (0,7)
$$

11) $7-3$
structe

$$
\sigma w=\vec{F} \cdot \vec{d}=|\vec{F}||\vec{d}| \cos \theta
$$

And $\theta=0^{\circ}$ (Forker AND DIsmarien its zams Dencerame.)
A FBD Fur ture Furariatitin $\#$,

$$
\Sigma F=F_{c_{\text {LIMB }}}-m g=0 \rightarrow F_{\text {CIIMB }}=m g
$$

so

$$
\begin{aligned}
& W=\operatorname{mgd}=(75 \mathrm{~kg})(9.8 \mathrm{~m} / \mathrm{sz})(20 \mathrm{~m}) \\
& 1 w=1.47 \times 10^{4} \mathrm{~s}
\end{aligned}
$$

12) $7-6$

As turi indput arm mulas
 ΔY_{i}, THAR OUTPLT ARM MaNis Δy_{0}
But wit CAN Zoom In or Gork TrIANGLE To zRE

$$
-\theta \ldots \Delta y_{0} \frac{\Delta y_{0}}{2}=l_{0} \sin \left(\frac{\theta}{2}\right) \text { so }\left\{\begin{array}{l}
\Delta y_{i}=2 l_{I} \sin \left(\frac{\theta}{2}\right) \\
\Delta y_{0}=2 l_{0} \sin \left(\frac{\theta}{2}\right)
\end{array}\right.
$$

Thind ther work dontr on ther itacy SIDRE IS

$$
\begin{aligned}
& W_{I}=F_{I}\left(2 l_{I} \sin \frac{\theta}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { su } \\
& 2 F_{I} l_{I} \sin \frac{\theta}{2}=2 F_{0} l_{0} \sin \frac{\theta}{2} \\
& \text { so } \rightarrow \frac{F_{0}}{F_{I}}=\frac{l_{I}}{l_{0}}
\end{aligned}
$$

