1) $6-2$

$$
\begin{aligned}
& M_{\text {moon }}=7.35 \times 10^{22} \mathrm{~kg} \text { solutions to PS } 7 \\
& R_{\text {maon }}=1.74 \times 10^{6} \mathrm{~m} \\
& g_{\text {roon }}=\frac{G_{1} M_{\text {Moon }}}{R_{\text {monn }}^{2}}=\frac{\left(6.67 \times 10^{-4} \frac{\mathrm{NN} \mathrm{~m}^{2}}{\mathrm{~kg}}\right)\left(7.35 \times 10^{22} \mathrm{~kg}\right)}{\left(1.74 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& g_{\text {maxa }}=1.6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2) $6-71$

$$
g_{\text {SATduTh }}=8.9 \mathrm{~m} / \mathrm{s}^{2} \text { STILL PRRTT BIG }
$$

3) $6-11$

$$
\begin{aligned}
& 4 m \hat{i}^{4}-x_{0}-{ }^{3} \quad \vec{F}_{\text {INET }}=\sum_{i=2}^{4} \vec{F}_{1 i}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}_{i 2}=+C_{G} \frac{(m)(2 m)}{x_{0}^{2}} \hat{\imath} \\
& \vec{F}_{14}=+G \frac{(m)(4 m)}{y_{0}{ }^{2}}{ }_{j} \\
& \left|\vec{F}_{13}\right|=G \frac{(m)(3 m)}{\left(x_{0}^{2}+y_{0}^{2}\right)} \\
& \text { Whenfer }
\end{aligned}
$$

To GRET ThE DFRECTION of \vec{F}_{13}
3) 6-11 (CONTANMAD)

$$
\begin{aligned}
& \operatorname{proj}_{x} \vec{F}_{13}=F_{13} \cos \theta \hat{\imath}=F_{13} \frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}} \hat{\imath} \\
& \operatorname{proj}_{y} \vec{F}_{13}=F_{13} \sin \theta \hat{\jmath}=F_{13} \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}} \hat{\jmath}
\end{aligned}
$$

so,

$$
\vec{F}_{13}=G \frac{3 m^{2}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{3 / 2}}\left(x_{0} \hat{\imath}+y_{0} \hat{\jmath}\right)
$$

Thain,

$$
\vec{F}_{\text {NET }}=\sum_{i=2}^{4} \bar{F}_{1 i}=\operatorname{Cm}^{2}\left[\left(\frac{2}{x_{0}^{2}}+\frac{3 x_{0}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{3 / 2}}\right) \hat{\imath}+\left(\frac{4}{y_{0}^{2}}+\frac{3 y_{0}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{3 / 2}}\right) \hat{\jmath}\right]
$$

H) IF THF FARTH'S ORBI, IS CIRCMCAR THEN Thte Forrcer of CIRANITT on the barth from The suns is A chntizarital forch

Thas

$$
G \frac{M_{\Theta} M_{\oplus}}{R^{2}}=M_{\oplus} \frac{V^{2}}{R}
$$

If wr solur for thre suris mass (M_{0}) wore hate
$N_{\theta}=\frac{R V^{2}}{G}$. SINSCR THR ORBIT IS CIRCNCAR, $V=\frac{2 \pi R}{T}$

$$
\rightarrow M_{0}=\frac{R\left(\frac{2 \pi R}{T}\right)^{2}}{G}=\frac{4 \pi^{2} R^{3}}{T^{2} G} \cdot \quad P \ln c_{2} \cos ^{2} 44
$$

Ins Thure \#'s

$$
M_{0}=\frac{4 \pi^{2}\left(1.8 \times 10^{8}\right)^{3}}{\left.\left(6.67 \times 10^{-11}\right)(365)(24)(3600)\right]^{2}} \approx 2 \times 10^{30} \mathrm{~kg}
$$

5) $6-29$

$$
E F=N-m g=m a
$$

spring scale morasurrs $N S$

$$
\rightarrow N=m(a+g)
$$

(c)

$$
\begin{aligned}
N=m(a+g) & =(53 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
N & =520 \mathrm{~N}
\end{aligned}
$$

(b) $N=m(a+g)=(53 \mathrm{~kg})(0.33 g+g)=(53 \mathrm{~kg})\left(1.33 .8 .87 \mathrm{~s}^{2}\right)$

$$
N=690 \mathrm{~N}
$$

$$
\begin{gathered}
\text { (c) } N=m(-0.33 \mathrm{~g}+g)=(53 \mathrm{~kg})\left(0.67 .9 .8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
N=350 \mathrm{~N}
\end{gathered}
$$

$$
\text { (d) } N=m(-g+g)=0
$$

8.50

IN Grintrat, The FERLD FROMA starnce POINT MASS is

$$
\vec{g}(\vec{r})=-C \frac{M}{1 r^{2}} \hat{r}
$$

 AND opposfit, and thus CNNLEL.

Thur y-compontants arie ticlual ands an the stimar dirfections

$$
\begin{aligned}
& g_{y}=2\left(-G \frac{m}{x_{0}^{2}+y^{2}} \cos \theta\right) \quad \text { But } \quad \cos \theta \cdot \frac{y}{\sqrt{x_{0}^{2}+y^{2}}} \\
& \operatorname{sog},-2 G \frac{m y}{\left(x_{0}^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

TuAN $\overline{\vec{g}}=-2 G \frac{m y}{\left(x_{0}^{2}+y^{2}\right)^{3 / 2}} \hat{\jmath}$
(b) AT MAXIMA (ar Manima) $\frac{d g}{d y}=0$

So, $\quad 0=\frac{d}{d y}\left(2 \operatorname{Gm} \frac{y}{\left(x_{0}^{2}+y^{2}\right)^{3 / 2}}\right) \quad\left[\begin{array}{c}\text { usiz } \\ \text { Rnirizet }\end{array}\right]$

$$
0=\frac{d}{d y}(2 \operatorname{Gimy})\left(\frac{1}{\left(x_{0}^{2}+y^{2}\right)^{3 / 2}}\right)+(2 \operatorname{Gimy}) \frac{d}{d y}\left(\frac{1}{\left(x_{0}^{2}+y^{2}\right)^{3 / 2}}\right)
$$

T(usk chaten rus!)

$$
0=2 \operatorname{Gim}\left(\frac{1}{\left(x_{0}^{2}+y^{2}\right)^{3 / 2}}\right)+2 \operatorname{Gmy}\left(\frac{3}{2}\left(x_{0}^{2}+y^{2}\right)^{1 / 2}\right) 2 y
$$

$$
\rightarrow \quad y=\frac{x_{0}}{\sqrt{2}}
$$

i1) 8.50 (continuars)
Pluc, thas into g to curt grak

$$
\begin{aligned}
g_{\text {max }} & =2 \operatorname{Gm} \frac{x_{0} / \sqrt{2}}{\left(x_{0}^{2}+x_{0}^{2} / 2\right)^{3 / 2}} \\
& =\frac{2 \operatorname{Gm} x_{0}}{(2)^{1 / 2}\left(x_{0}^{2}+x_{0}^{2} / 2\right)^{3 / 2}} \quad \text { Now MunTIPCT } \\
g_{\text {max }} & =\frac{4 G m x_{0}}{(2)^{3 / 2}\left(x_{0}^{2}+x_{0}^{2} / 2\right)^{3 / 2}}=\frac{4 G m x_{0}}{\left(2 x_{0}^{2}+x_{0}^{2}\right)^{3 / 2}} \\
g_{\text {max }} & =\frac{4 G m x_{0}}{(3)^{3 / 2} x_{0}^{3}}=0.77 \frac{G m}{x_{0}^{2}}
\end{aligned}
$$

9-13 TWVR病 Is FOT NFT EXTRRNALFORCR so momrntum Is consincurad

$$
\begin{aligned}
& P_{f}=m_{b} V_{b}+m_{p} V_{p} \\
& P_{i}=0
\end{aligned}
$$

so $\quad M_{b} v_{b}+m_{p} v_{p}=0$

$$
\begin{aligned}
\longrightarrow m_{b} v_{b} & =-m_{p} v_{p} \\
m_{b} & =59 \mathrm{~kg} \\
m_{p} & =6.7 \mathrm{~kg} \\
v_{p} & =10 \mathrm{~m} / \mathrm{s} \\
v_{b} & =\frac{-(5.7 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})}{m_{3}(59 \mathrm{~kg})}
\end{aligned}
$$

$$
v_{b}=-0.97 \mathrm{r} / \mathrm{s}
$$

$\uparrow V_{B}$ IN $6 ?$
of V_{P}
$9-27$
RAINT is FALIING AT A RANE Of

$$
5 \mathrm{cm/hr}\left(\frac{1 \mathrm{~m}}{100 \mathrm{c}-}\right)\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=\underbrace{1.39 \times 10^{-5} \frac{\mathrm{~m}}{\mathrm{~s}}}_{\substack{\text { RATR } \\ \text { ADDFD, NOTH A UVILOCITY! }}}
$$

Thinn ther NoLumir Collfeted butar shecond Is $\quad\left(1.39 \times 10^{-5} \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(1 \mathrm{~m}^{2}\right)=1.39 \times 10^{-5 \mathrm{~m}} / \mathrm{s}$

TPIEN The Mass ADDID pfir sacond is

$$
m=\left(1.39 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)\left(1 \times 40^{3} \frac{\mathrm{~kg}}{\mathrm{~ms}}\right)=1.39 \times 10^{-2} \mathrm{~kg} / \mathrm{s}
$$

Now, wTE CAN FAND THE MOMENTUM OF ThIS WATER THAT IS LOST EVERY SECOND

$$
\begin{gathered}
\Delta p=\left(1.39 \times 10^{-2} \mathrm{~kg}\right)(8.0 \mathrm{~m} / \mathrm{s}) \\
\Delta p=0.11 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

The Aviratite forcer is THiN

$$
\frac{\Delta p}{\Delta t}=\frac{0.11 \mathrm{kgn} / \mathrm{s}}{1 \mathrm{~s}}=0.11 \mathrm{kgm} / \mathrm{s}^{2}=0.11 \mathrm{~N}
$$

($\because \mathrm{O}$

$$
\vec{V}_{0}=(13 \mathrm{~m} / \mathrm{s}) \hat{\jmath}
$$

proiscem statigs that that collesions is后LASTC

SO WR CAN CONSERVE ENERGY AND MOMRENTIM

$$
\begin{array}{ll}
E_{i}=\left.\frac{1}{2} M \vec{N}_{0}\right|^{2} & E_{f}=\frac{1}{2} M\left|\vec{v}_{b_{f}}\right|^{2}+\frac{1}{2}\left(\frac{M}{5}\right)\left|\vec{v}_{P_{f}}\right|^{2} \\
\vec{P}_{i}=M \vec{V}_{0} & \vec{P}_{f}=M \vec{v}_{b_{f}}+\frac{M}{5} \vec{v}_{P_{f}}
\end{array}
$$

Bratak these into x, y coill ponents.

$$
\begin{gathered}
P_{i x}=0 \quad P_{f x}=M V_{b_{f x}}+\frac{M}{5} V_{P_{f x}}=M V_{f} \quad P_{f_{y}}=M V_{b_{f y}}+\frac{M}{5} V_{P_{f y}} \\
V_{b_{f} \cos \theta} \quad \tau_{V_{P_{f}} \cos 75^{\prime}}
\end{gathered}
$$

9-88 (cont)
so wie have:

$$
\left\{\begin{array}{l}
\frac{1}{2} M V_{0}^{2}=\frac{1}{2} M V_{b f}^{2}+\frac{1}{2}\left(\frac{M}{5}\right) V_{P_{f}}^{2} \tag{1}\\
0=-M v_{b_{f}} \sin \theta+\frac{M}{5} V_{P_{f}} \sin 75^{\circ} \\
M V_{0}=M v_{b_{f}} \cos \theta+\frac{M}{5} V_{P_{f}} \cos 75^{\circ}
\end{array}\right.
$$

3 rauntions 3 unknowns $\left(V_{P_{f}}, v_{b f}, \theta\right)$
A) FIND $V_{P f}$:

FROM (2) $\quad M V_{b_{f}} \sin \theta=\frac{\mu}{5} V_{P_{\delta}} \sin 75$

$$
5 v_{b f} \sin \theta=v_{P_{f}} \sin 75
$$

FROM © © $\quad v_{0}^{2}=v_{b f}^{2}+\frac{1}{5} v_{P_{f}}{ }^{2} \rightarrow 5 v_{b_{f}}{ }^{2}=5 v_{0}^{2}-v_{P_{f}}^{2} \Leftrightarrow$
From (3) $5 v_{0}=5 v_{b_{f}} \cos \theta+v_{P_{f}} \cos 75$

$$
G \quad 5 V_{D_{f}} \cos \theta=5 v_{0}-v_{P_{f}} \cos 75
$$

so wir mauk

$$
\begin{aligned}
& 5 v_{b f} \sin \theta=v_{P_{f}} \sin 75 \\
& 5 v_{b 5} \cos \theta=5 v_{0}-v_{P f} \cos 75
\end{aligned}
$$

SQuARR Botu to grat

$$
\begin{aligned}
& 25 v_{b f}^{2} \sin ^{2} \theta=\left(v_{p_{f}}^{2} \sin ^{2} 75\right. \\
& 25 v_{b f}^{2} \cos ^{2} \theta=\left(5 v_{0}-v_{p_{f}} \cos 75\right)^{2}=25 v_{0}^{2}+4_{p}^{2} \cos ^{2} 75-\operatorname{cov}_{0} \psi_{p} \cos 7 \\
& \hline
\end{aligned}
$$

AND ADD ThRM (REmbinbir $\sin ^{2} \theta+\cos ^{2} \theta=1$) L_{2}

9-88 (cont)
prarrangiz th art

$$
\omega_{5} 6 V_{P_{f}}^{2}=10 V_{0} V_{P_{f}} \cos 75
$$

$$
v_{P f}=\frac{10}{6} v_{0} \cos 75=15.6 \mathrm{~m} / \mathrm{s}=v_{P_{f}}
$$

B) Now that wr know $\left|\vec{U}_{\text {Pf }}\right|$, wre can usi (A) TO GEM V_{f}

$$
\begin{gathered}
v_{b_{f}}^{2}=v_{0}^{2}-\frac{1}{3} v_{p_{f}}^{2}=(13)^{2}-\frac{1}{5}(5.6)^{2} \\
v_{b f}=12.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

C) Sinen

$$
v_{P_{f}} \sin 75^{\circ}=v_{b_{f}} \sin \theta
$$

$$
\theta=\arcsin \left(\frac{v_{p_{f} \sin 75}}{v_{b s}}\right)=44.9^{\circ}=\theta
$$

$$
\begin{aligned}
& \Rightarrow 25 V_{D G}^{2}=25 V_{0}^{2}+V_{P f}^{2}-\left(\delta V_{0} V_{P f} \cos 75\right) \\
& =5\left(5 \mathrm{Vbrf}_{\mathrm{f}}{ }^{2}\right) \text { Pluci in from privilous pacif... } \\
& 5\left(5 v_{0}^{2}-v_{P f}^{2}\right)=25 v_{0}^{2}+v_{P f}^{2}-15 v_{0} v_{P f} \cos 75 \\
& 25 v_{0}^{2}-5 v_{P f}^{2}=25 v_{0}^{2}+V_{P f}^{2}-10 V_{0} v_{P f} \cos 75
\end{aligned}
$$

9.951

Br 5802π

$$
A \rightarrow V_{O n}=\text { ? }
$$

$$
\begin{aligned}
& m_{A}=1500 \mathrm{~kg} \\
& m_{B}=1100 \mathrm{~kg}
\end{aligned}
$$

Affer
30 m SLEDS

WE NVIVD TO FIND $V_{O A}=$ VIELOCFTY OF
A BEFORE MIE APPLEES THF BRAKEL

FERST WF CAN FANT IT IN TERMS OF THR
VElOLE OF A JUST BEFORE THE COLCESION.

$$
\begin{equation*}
\Delta k l_{0}=\sqrt{\frac{1}{2} m_{A} V_{f A}^{2}-\frac{1}{2} m_{A} V_{O A}^{2}=-\mu m_{A} g d} \tag{1}
\end{equation*}
$$

Whe ACSO kNOW THAT mEOMENT UM IS CONSERURD Rurtane The COLLISION. So

$$
m_{A} v_{f A}=m_{A} v_{A}+m_{B} v_{B}
$$

(2) $V_{A,} V_{B} A R E$ VEL ture corciecon
9.951 (CONTINURD)

AND AFTER THE COLISIIN WH KNOW THAT

$$
\begin{align*}
& -\mu m_{A} g d_{A}=-\frac{1}{2} m_{A} V_{A}^{2} \tag{3}\\
& -\mu m_{B} g d_{B}=-\frac{1}{2} m_{B} V_{B}^{2} \tag{4}
\end{align*}
$$

\& Wr Now Nrerd To usfe (1), (2), (3), (4) TO Faczure out $V_{O A}$.

From (3) AND (4) wre kNow

$$
\begin{aligned}
& V_{A}=\sqrt{2 \mu_{k} g d_{A}}=14.7 \mathrm{~m} / \mathrm{s} \\
& V_{B}=\sqrt{2 \mu_{k} g d_{B}}=18.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now, usith Thesti IN (2)

$$
\begin{aligned}
M_{A} V_{A f} & =m_{B}(18.9 \mathrm{~m} / \mathrm{s})+m_{A}(14.7 \mathrm{~m} / \mathrm{s}) \\
V_{A f} & =28.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now we cans usi THIS IN (1)

$$
\begin{aligned}
& V_{A O}=31.6 \mathrm{~m} / \mathrm{s}=114 \mathrm{~km} / \mathrm{hr}>90 \mathrm{~km} / \mathrm{mm}
\end{aligned}
$$

