Physics 113 - Solutions to problem set 9
10.29

$$
\tau=75 \mathrm{~N} \cdot \mathrm{~m}=r F_{\perp}
$$

If $r=0.28$ Theren

$$
F_{\perp}=\frac{75 \mathrm{~N} \cdot \mathrm{~m}}{0.28 \mathrm{~m}}=270 \mathrm{~N}=E_{\perp}
$$

AT TuR BOLT $r=\frac{15 \mathrm{mn}}{2}=0.0075 \mathrm{~m}$

$$
\text { so } F_{\perp}=\frac{\tau}{r}=\frac{75 \mathrm{~N} \cdot \mathrm{~m}}{0.0075 \mathrm{~m}}=10,000 \mathrm{~N}=F_{\perp}
$$

This, forcar is TISTREBGUTRD ON 6 POSNTS, So Ture forcer on rach point is,

$$
\frac{10000 \mathrm{~N}}{6}=1700 \mathrm{~N}
$$

$10-39\left(\right.$ (c) $\alpha=\frac{9}{r}=\frac{\left(\frac{8.5 \mathrm{~m} / \mathrm{s}}{6.385}\right)}{0.31 \mathrm{n}}=78 \mathrm{red} / \mathrm{s}^{2}$
(b)

$$
\begin{aligned}
& I_{\text {ARM }}=\frac{1}{3} M_{c a n} l^{2} \quad I_{B A C C}=m_{B_{A C C}} l^{2} \\
& \Sigma \tau=\tau_{\text {ARM }}=I_{\alpha}=\left(\frac{1}{3} M_{\text {ARM }} \ell^{2}+m_{\text {BALC }} l^{2}\right) \alpha \\
& m_{\mathrm{mm}}=3.7 \mathrm{~kg}, \quad m_{\text {BACC }}=1 \mathrm{~kg}, \quad l=0.71 \mathrm{~m} \\
& \tau=16.7 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Than ther forcer from thr TRICRPS Muscla Is

$$
F=\frac{\tau}{r}=\frac{16.7 \mathrm{Nm}}{0.025 \mathrm{~m}}=670 \mathrm{~N}=F
$$

$10-45$

$$
\underbrace{1}_{m} \frac{m}{l} \frac{m}{l} \frac{m}{l} 0^{m}
$$

(a) $I=\sum_{i} m_{i} r_{i}{ }^{2}=m(e)^{2}+m(2 l)^{2}+m(3 e)^{2}=14 m e^{2}$
(b)

$$
\tau=r F_{1}=(3 e) F_{+}=\frac{\left(14 m e^{2}\right) \alpha}{\left(F_{\perp}=\left(\frac{14}{3} m l\right) \alpha\right.}
$$

(c) THTR forcra rraceliraid is MENEMIZFAD WHEN IT FS PERPEMDICUCR TO TuI RUR
10.58

$$
\text { (c) } I_{p m}=M R_{0}^{2}
$$

(b) $I_{c n}=\frac{2}{5} M r_{1}^{2}$

Turion, BY P.A:T $\quad F_{A B}=\frac{2}{5} M r_{1}{ }^{2}+M R_{2}{ }^{2}$

$$
\begin{aligned}
(c) \% \text { DIFFriREiNCR } & =\frac{I_{A B}-I_{P m}}{I_{A B}} \\
& =\frac{\frac{2}{5} m r_{1}^{2}+m R_{0}^{2}-m B_{0}^{2}}{\frac{2}{5} m r_{1}^{2}+m R_{0}^{2}}=\frac{\frac{2}{5} m r_{1}^{2}}{\frac{2}{5} m r_{1}^{2}+m R_{0}^{2}} \\
& =\frac{\frac{2}{5} r_{1}^{2}}{\frac{2}{5} r_{1}^{2}+R_{0}^{2}}=0.3 \%
\end{aligned}
$$

$$
W_{R \sigma T}=\int \tau \cdot d \theta \quad O R \quad \tau \phi \theta
$$

ANTD powna $\rightarrow P=\frac{W}{\Delta t}$
So $P=\frac{\tau \Delta \theta}{\Delta t}=\tau \frac{\Delta \theta}{\Delta t}$
AT $3750 \mathrm{rpm} \quad \frac{\Delta \theta}{\Delta t}=\frac{(3750 \mathrm{rev})}{(60 \mathrm{sec})}\left(\frac{2 \pi \mathrm{ret}}{(\mathrm{rev}}\right)=392 \mathrm{red} / \mathrm{s}$

$$
P=(255 \mathrm{~N} \cdot \mathrm{~m})(392 \mathrm{rcd} / \mathrm{s})=99,960 \mathrm{w}
$$

But $1 \mathrm{H.P}=746 \mathrm{~W}$
so $P=\frac{99,96}{746}=134$ H.P
10-66 (wre CAN LSTE CONDRERMAIEAN or Fentracie.

$$
\begin{aligned}
& E_{i}=m g h_{c m} \\
& E_{f}=\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Tuir Crinver
of mass $A T$ $h_{\text {cmf }_{f}}=\frac{L}{2}$. InNitally
If is at a mizaght

$$
h_{c m}=\frac{L}{2}(1-\cos \theta)
$$


so

$$
\begin{aligned}
& E_{i}=\varepsilon_{f} \rightarrow m g \frac{L}{2}(1-\cos \theta)=\frac{1}{2}\left(\frac{1}{3} m L^{2}\right) \omega^{2} \\
& \omega=\left(\frac{3 g}{L}(1-\cos \theta)\right)^{1 / 2} \text { And } \quad V=\omega L=(3 g L(1-\cos \theta))^{1 / 2}
\end{aligned}
$$

$10-671$

$$
\begin{aligned}
& M_{A}=35 \mathrm{~kg} \\
& M_{B}=38 \mathrm{~kg} \\
& M_{P}=3.1 \mathrm{~kg}
\end{aligned}
$$

usve CONSFRMATICN
mpr
of firstarcir
$M_{B}$

$$
\begin{aligned}
& R_{p}=0.381 \mathrm{~m} \\
& I_{p}=\frac{1}{2} m_{p} R_{p}^{2}
\end{aligned}
$$

$M_{A} \quad \uparrow_{h}=2.5 \mathrm{~m}$

$$
\sqrt{2}_{i}=m_{B} g h
$$

so

$$
E_{f}=\frac{1}{2}\left(m_{B}+m_{A}\right) v_{f}^{2}+\frac{1}{2}(\frac{1}{2} m_{P} \underbrace{\left.R_{P}^{2}\right) \omega_{f}}_{V_{f}^{2}}{ }^{2}
$$

$$
\begin{aligned}
m_{B} g h & =\frac{1}{2}\left(M_{A}+m_{B}+\frac{1}{2} m_{P}\right)_{V_{f}}^{2} \\
v_{f} & =\left(\frac{4 m_{B} g h}{2 m_{A}+2 m_{B}+m_{P}}\right)^{1 / 2}=1.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

10.731
A) $E_{i}=m g h$

$$
F_{f}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I w_{f}^{2}
$$



So,

$$
\begin{aligned}
m g h & =\frac{1}{2} m v_{f}^{2}+\frac{1}{2}\left(\frac{2}{5} m R^{2}\right) w_{f}^{2} \\
& =\frac{1}{2} m v_{f}^{2}+\frac{1}{5} m v_{f}^{2}=\frac{7}{10} m v_{f}^{2} \\
v_{f} & =\left(\frac{(0}{7} g h\right)^{1 / 2}=8.4 m / s
\end{aligned}
$$

B)

$$
\begin{aligned}
& k_{E_{T}}=\frac{1}{2} m v_{f}^{2} \\
& k_{k_{R}}=\frac{1}{5} m v_{f}^{2} \quad \text { so } \overline{\frac{k \varepsilon_{T}}{K \xi_{R}}=\frac{5}{2}}
\end{aligned}
$$

$$
\omega_{f}=\frac{V_{f}}{R}=34.5 \mathrm{rad} / \mathrm{s}
$$

 radfus
$|0-75|$

$$
\begin{array}{ll}
E_{i}=m g h=m g R_{0} \\
E_{f}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I w_{f}^{2} \quad I=\frac{2}{5} m r_{0}^{2}
\end{array}
$$

so

$$
\begin{gathered}
m g R_{0}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2}\left(\frac{2}{r} m r_{0}^{2}\right) w_{f}^{2} \\
g R_{0}=\frac{1}{2} v_{f}^{2}+\frac{1}{5} v_{f}^{2}=\frac{7}{10} v_{f}^{2} \\
v_{f}=\sqrt{\frac{10}{7} g R_{0}}
\end{gathered}
$$

$10-811$

A) WTHAT IS ITS SPFLDD?

Constarure rentircit.

$$
E_{(1)}=E_{(2)}
$$

$$
E_{0}=m g R_{0}
$$

mottar $\uparrow$ entarcer as is Fankras lravis Ramp

$$
\begin{aligned}
E_{2}=m g\left(R_{0}-\left(R_{0}-r_{0}\right) \cos \theta\right) & +\frac{1}{2} m v_{\theta}^{2} \\
& +\frac{1}{2} I \omega_{(2)}^{2} \\
I= & \frac{2}{5} m r_{0}^{2}, \omega_{\theta}^{2}=\frac{\psi_{0}^{2}}{r_{0}^{2}}
\end{aligned}
$$


so...

$$
m g R_{0}=m g R_{0}-m g R_{0} \cos \theta+m g r_{0} \cos \theta+\frac{1}{2} m v_{\theta}^{2}+\frac{1}{5} m \frac{\psi_{0}^{2}}{r_{0}^{2}}
$$

PLemen If kNow AND socite for

$$
\begin{aligned}
& \rightarrow \underline{v}_{\theta}^{2} \rightarrow\left|\vec{v}_{\theta}\right|=\sqrt{v_{0}^{2}} \\
& \rightarrow\left|\overrightarrow{v_{e}}\right|=1.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$10-811$ (CONT)
B) BALL Movris LIKE A PROFBCTILE.

Ther find of Thre RAMP IS AT

$$
\begin{aligned}
& x_{0}=R_{0} \sin 45^{\circ}-r_{0} \sin 45^{\circ} \quad \text { AnP } \\
& y_{0}=R_{0}-R_{0} \cos ^{2} 5^{\circ}+r_{0} \cos ^{2} 45^{\circ}
\end{aligned}
$$

AND $\quad V_{0 x}=V_{(2)} \cos 45^{\circ}, V_{0 y}=V_{2} \sin 45^{\circ}$

$$
a_{x}=0, \quad a_{y}=-9
$$

usi $\quad y=y_{0}+v_{0 y} t+\frac{a_{y}}{2} t^{2}$

$$
0=R_{0}-R_{0} \cos 45^{\circ}+r_{0} \cos 45^{\circ}+V_{0} \sin 45^{\circ} t-\frac{1}{2}\left(3.875^{2}\right) t^{2}
$$

Sounre amadratic for $t$

$$
\rightarrow t=0.277 \mathrm{~s} \text {, on }-0.0528 \mathrm{~s}
$$

N⿸GATIVE TIMA DORSN'T MAKR SRNCR
So In THA TEMR

$$
\begin{aligned}
x_{f}=x_{0} & +v_{0 x} t+\frac{1}{3} e_{x} t^{2} \\
& \rightarrow x_{4}=R_{0} \sin 45^{\circ}-r_{0} \sin 45^{\circ}+V_{0} \cos 45^{\circ} t
\end{aligned}
$$

$y=x_{f}=0.48 \mathrm{~m}$
$.10-94$
(a) for $r \ll R$

At The top of the wop wee HAver
$E F=m g+N=m \frac{v^{2}}{R}$, BLT WE WAND
$N$ To VANISM;

$$
\text { so } g=\frac{v^{2}}{R} \rightarrow v=\sqrt{g R}
$$

So Now wit can usa Eistergu consfrruntion

$$
\begin{aligned}
& E_{i}=m g h, \quad \bar{r}_{f}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I w_{f}^{2}+m g 2 R \\
& \quad \tau \quad I=\frac{2}{5} m r^{2} \\
& C_{j} m h=\frac{1}{2} m v_{f}^{2}+\frac{1}{5} m v_{f}^{2}+m g 2 R \\
& C_{g} g h=v_{f}^{2}\left(\frac{1}{2}+\frac{1}{5}\right)+2 g R \quad \text { But } g R=v_{f}^{2},
\end{aligned}
$$ a

so

$$
\begin{gathered}
h=\frac{g R}{g}\left(\frac{7}{10}+\frac{2 g R}{g}\right)=\frac{27}{10} R \\
h=2.7 R
\end{gathered}
$$

$11-3$
(a) HIS momint of fuñrta incrrases

$$
\rightarrow \quad L_{1}=L_{2} \rightarrow I_{1} \omega_{1}=I_{2} \omega_{2} \rightarrow \omega_{2}=\frac{I_{1}}{I_{2}} \omega_{1}
$$

so $\omega_{2}<\omega_{1}$ sinsck $I_{2}>I_{1}$
(b)

$$
I_{1} \omega_{1}=I_{2} \omega_{2} \rightarrow \quad \frac{I_{2}}{I_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{0.9 \mathrm{rcv} / \mathrm{s}}{0.7 \mathrm{rcs} / \mathrm{s}}=1.3
$$

$$
11-10
$$

AcaAns $\quad I_{i} \omega_{i}=I_{f} \omega_{f} \rightarrow \omega_{f}=\frac{I_{i}}{I_{f}} \omega_{i}$

$$
\begin{aligned}
& I_{i}=\frac{1}{2} m R^{2}, \omega_{i}=3.7 \mathrm{rev} / \mathrm{s} \\
& I_{f}=\frac{1}{2} m R^{2}+\frac{1}{12} m(2 R)^{2}=\frac{5}{6} m R^{2}
\end{aligned}
$$

so

$$
\omega_{f}=\frac{\frac{1}{2} m R^{2}}{\frac{5}{6} m R^{2}} \omega_{i}=\frac{3}{5} \omega_{i}=22 \frac{m_{2}}{3}=\omega_{f}
$$

11-111 AGAand, consrreure anthlarirntam.
A)

$$
\begin{aligned}
& I_{i}=\frac{1}{2} M R^{2} \quad \omega_{i}=0.95 \mathrm{rcd} / 3 \\
& I_{f}=\frac{1}{2} M R^{2}+m R^{2} \\
& \prod P \quad \omega_{f}=\frac{\frac{1}{2} M R^{2}}{\frac{1}{2} M R^{2}+m R^{2}}(0.95 \mathrm{red} / \mathrm{s})
\end{aligned}
$$

$$
\omega_{f}=0.55 \mathrm{rad} / \mathrm{s}
$$

B)

$$
\begin{aligned}
& K_{\varepsilon_{i}}=\frac{1}{2} I_{i} \omega_{l}^{2}=\frac{1}{4} M R^{2} \omega_{d}^{2}=4205 \\
& K{r_{f}}_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}+m R^{2}\right) \omega_{f}^{2}=2405
\end{aligned}
$$

