

Exam 1 (February 12, 2015)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work unless otherwise indicated.

Problem 1 (10 pts, show work):
Consider the situation sketched to the side. An electric charge -q is situated at the origin of the 2dimensional system. Four other charges are shown at distances of $1 \mathrm{r}, 2 \mathrm{r}$ or 3 r from the origin. The charge sign and magnitude and positions of those four charges are shown in the sketch. Determine the net force on the charge at the origin. Give your answer in terms of q, r and $\mathrm{k}\left(\mathrm{or} \varepsilon_{o}\right)$.

The force contributions on central q from the -189 and $+2 q$ cancel
$\frac{k(t 29)(-18)}{r^{2}}+\frac{k(-18)(-19)}{(3 r)^{2}}=0$
This leaves only contributions from
 This give

$$
F=\frac{12 q^{2}}{4 r^{2}}
$$

$$
f_{N T T}=\sqrt{\left(\left\{\frac{k g^{2}}{4 r^{2}}\right\}^{2}\right.}=\frac{k g^{2}}{4 r^{2}}
$$

diration is Northwest

Problem 2 (15 points, show work):
Consider a cubic (nonconducting) surface with sides of length d where one of the sides has been pushed out (with a corresponding increase in the area of that side) to make a 60 degree angle with the plane of one of the other sides as shown in the sketch. A constant electric field of magnitude $E=4$ N / C is incident at a normal angle on the side designated as " I " on the sketch. Let $\mathrm{d}=2$ meters.
a) What is the electric flux through surface I?

$$
\text { area of } I=(2 m)^{2}=4 m^{2} \quad \vec{E} \cdot \tilde{n}=-1
$$

$$
\begin{aligned}
\phi_{I} & =-4 \frac{N}{C} 4 \mathrm{~m}^{2} \\
& =-16 \frac{\mathrm{Nm}^{2}}{\mathrm{C}}
\end{aligned}
$$

b) What is the electric flux through surface II?

Ares of II d^{\prime}

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{2}{d^{\prime}} \\
& d^{\prime}=\frac{2}{\sin 60^{\circ}}=2.3
\end{aligned}
$$

Area II $=d d^{\prime}=4.61 \mathrm{~m}^{2}$

$$
\phi_{\text {II }}=|\vec{E}| \cos 30 \text { Anent }
$$

$$
=4 \cos 304.61=+16
$$

$$
N n^{2}
$$

c) What is the total electric flux through the surface shown in the figure?
closed smface
Gauss tells no

$$
\phi_{\text {Toul }}=\frac{Q_{\text {enclose }}}{t_{0}}
$$

There is ND enclosed charge. So Total flux though surface is 320.

Problem 3 (10 pts, short answer/essay):
Biff Hamilton takes on a night job at the Suds R Us brewpub and laundromat. He was very excited about being a bartender but he made the unfortunate error of chatting up the owner's daughter and now Biff finds himself working on the laundry side of the business, folding the clothes that come out of the dryers. While at work one day, feeling sorry for himself, Biff notices that when he takes clothes out of the dryer most of the items seem to stick together. Interestingly, he observes that two identical socks coming out of a dryer load repel each other. Briefly explain the physics behind Biff's observation.
The attraction cones about because, change is eachumged oren dissimilas Matesinnts are rubbed together due to differing "elect onegativitiers" (Tendency for Material to alnacT/hold auto electrons). Each of the two socks will be come charged when subbing other Materials. Since they are identical they will each tend to have the same sian ofelectice change and repel one another.

Problem 5 (20 points, no need to show work):
A very small, charged, metal sphere is placed inside a thin conducting spherical shell of radius B without touching it. Two Gaussian spheres of radius A and C are used to find the net electric flux inside and outside of the shell. The situation is illustrated in the sketch below.
a) Suppose the electric flux through the two Gaussian surfaces is the same. What is the charge on the inner and outer surfaces of the conducting shell?

c) If the electric flux through the outer Gaussian surface is zero, what is the electric flux through the inner Gaussian surface?

d) If the electric flux through the outer Gaussian surface is zero, what is the charge on the inner and outer surfaces of the conducting shell?

Problem 6 (25 points, show work):
An infinite, straight, non-conducting cylindrical cable of radius R carries a volume charge density $\rho(\mathrm{r})=\mathrm{A} \sqrt{r}$ for $\mathrm{r}<\mathrm{R}$, where A is a constant, and $\rho=0$ for $\mathrm{r}>\mathrm{R}$.
(a) Determine the total charge per unit length along the cable in terms of the constant A .
check mints

$$
\begin{aligned}
& c_{m^{3}}=A m^{1 / 2} \\
&
\end{aligned}
$$

$$
m_{A N} \frac{c}{m^{3 / 2}}
$$

1)	$/ 10$
$2)$	115
$3)$	110
$4)$	120
$5)$	120
$6)$	125
tot	1100

(b) Find the electric field in all space as a function of r.
for $r<R$
choose,
Gaussian surface $r<R$
$\begin{aligned} & r<R \\ & \text { lens th } l\end{aligned}|\vec{E}| 2 \pi r l=\frac{1}{\epsilon_{0}} \int_{v} \rho d v$

$$
\begin{aligned}
|E| 2 \pi r l=\frac{1}{\epsilon_{0}} \int_{0}^{r} A r^{1 / 2} 2 \pi r l d r & =\frac{2 \pi l A}{E_{0}} \int_{0}^{r} r^{3 / 2} d r \\
|\vec{E}| 2 \pi l l & =\frac{2 \pi l A_{2} r^{5 / 2}}{\epsilon_{0}} \\
|\vec{E}|_{r<R} & =\frac{A}{\epsilon_{0}} \frac{2}{5} r^{3 / 2} \text { in } \hat{r} \text { direction }
\end{aligned}
$$

For $r>R$

$$
\begin{aligned}
& \int E \cdot d A=\frac{Q_{\text {ma }}}{\epsilon_{0}} \text { for Gawsoicn smifas or } r>R \\
& |\vec{E}| 2 \pi r l=\frac{Q}{L} \frac{l}{E_{0}} \quad \begin{aligned}
|E|=A \frac{4 \pi R^{5 / 2}}{S 2 \pi r E_{0}} & =A \frac{R^{5 / 2}}{5 \epsilon_{0} r} \\
& \text { in } \hat{r} \text { direction }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& Q / \frac{1}{L} \int \rho d v=\frac{1}{L} \int_{0}^{R} A \sqrt{r} 2 \pi r L d r \\
& \frac{Q}{L}=A 2 \pi \int_{0}^{R / 3 / 2} d r=\frac{A A-R^{s / 2}}{S / 2}=A^{A 4 \pi / 2}
\end{aligned}
$$

