P114-Manch 24,2015

2 weeks exam 2 grading (TA Exinns)
Today - My office how 3-4

- Prob set due a week from Friday

Long don't put it off until next week

Amperés law

Solenoid

∞ Solenoid
long, rigid slinky on spring

$$
\begin{array}{ll}
\oint_{B} \vec{B} \cdot \overrightarrow{l l}=B L=\mu_{0} L i n & \\
|\vec{B}|=\mu_{0} i n & \\
& \begin{array}{l}
\infty \text { field solendid } \\
\\
\\
\end{array} \quad \text { oulside } B=0
\end{array}
$$

Seduce vs. induce

路ution

Michael Faruday
$(1791-1867)$
British phys.cist
chemest

Discevered
Magectic induction
Farad nomed after Farcaday
Also invented the
Bunsen Bumen

Nochansize Fuilds Magnetostat:-
kerchoff

$$
\begin{aligned}
& \left.\sum V\right|_{\substack{\text { clused } \\
\text { Loop }}}=0 \\
& E \sim-\frac{d v}{d x} \\
& E \cdot d l \sim v \\
& \oint \vec{E} \cdot d l=0
\end{aligned}
$$

Charging fields

$$
\varepsilon=\oint_{\substack{\text { closed } \\ \text { roop }}} \vec{E} \cdot \overrightarrow{d l}=-\frac{d \Phi_{M}}{d t}
$$

Furadars low of induction

- wires
- Free space
- Matenials

$$
\varepsilon=\oint_{\substack{\text { closed } \\ \text { roup }}} \vec{E} \cdot \overrightarrow{d l}=-\frac{d \phi_{M}}{d t}
$$

Lenz's Law - The induced EMF ("cunt") opposes the change that produces it

$$
\begin{aligned}
& x \times \times \times \times \times \times
\end{aligned}
$$

$$
\begin{aligned}
& \vec{B} \quad 1-\frac{x}{x} \\
& \varepsilon=\frac{-d \Phi_{M}}{d t}=\frac{-d(B l x)}{d t}=-B l \frac{d x}{d t}=-B l r \\
& \vec{F}=-K\left(\vec{x}-x_{0}\right) \\
& \varepsilon=i R \quad \text { il }=\frac{\varepsilon}{R}=\frac{B R}{R}
\end{aligned}
$$

$$
\sigma_{0}^{\circ}
$$

incluctor withent
a date

Solenvid inductor

$$
\Phi_{M}=\left(\mu_{0} n ; A\right) n l
$$

leagthe
$\phi_{M}=\left(\mu_{0} n^{2} A l\right) i$
$\sin \operatorname{le}_{1000} \phi_{m}=\left(\mu_{0} n_{i}\right) A$

$$
\begin{aligned}
& \phi_{m} \alpha i \\
& \phi_{m}=B A \\
& \phi_{m}=\left(\mu_{0} n i\right) A \\
& \text { leusth of solenvid }=l \\
& \text { \# koops }=n l
\end{aligned}
$$

$$
\text { length } l
$$

$$
\xi
$$

$$
\equiv L=\text { Constin } 1 \text { of }
$$

Self induclance

$$
\begin{aligned}
& \frac{d i}{d t} \rightarrow \frac{d \phi_{m}}{d t} \rightarrow \varepsilon \\
& \varepsilon=-\frac{d \phi_{r}}{d t}=-L \frac{d i}{d r}
\end{aligned}
$$

©

