Physics 114-April 23, 2015

- Last class next Tuesday
- Last problem set to hand in This Friday
- Will give you selected problens/solns in last set of topics - Not for handing in.
- Exam 3 graded

Exam3 - Mean 69, Medion 70

Quantum Mechanics
1-d time independent Schrödinger equation $-\hbar^{2} d^{2} \psi(x)+\tilde{U} \psi(x)=E \psi(x) \quad$ Potential energy function

N plug in U and solve for E, ψ
$|\psi|^{2} \approx$ probability distribution for particle
$E \equiv$ Allowed energy STAtes for particle
$\sin ^{\text {ware potertiol discrete if potential is negative }}$ (force is atliactive)

Solve eq $\rightarrow \quad \psi(x)=A \operatorname{sink} x+B \cos k x$
Boundary conditions $\rightarrow \psi(0)=0, \Psi(L)=0$ Qumutisution

$$
\begin{aligned}
& \psi(x)=A \sin 2 x \\
& E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{L^{2} 2 m} \quad \begin{array}{l}
n=1,2,3 \ldots \\
\psi_{n}(x)=A \sin \left(\frac{n \pi}{L} x\right) \quad n=1,2,3 \ldots
\end{array}, \quad k_{n}=\frac{n \pi}{L}
\end{aligned}
$$

Arractive Potantials \leadsto diserete
 Staiks t Enengios Allowed
lead to quantization:
Go to Q_{M} and Atoms Slides -

A bit on quantum mechanics and atomic physics

Physics 114

References and photo sources:
K. Krane, Modern Physics, John Wiley and Sons, 1983

Max Planck (1858-1947) - 1918 Nobel Prize for work on spectral distribution of radiation (blackbody radiation)

Louis deBroglie (1892-1987) First suggested matter has wavelike properties

Three of the players

Earnest Rutherford (1871-1937) nuclear "plantetary" model of atom

Niels Bohr (1885-1962) developed a semi-classical nuclear model of the single electron atom

Time -independent Schrodinger equation

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x_{R}^{2}}+V(x) \psi(x)=E \psi(x) \quad \text { Term PE Term } R \text { Tot }
$$

$\psi(x) \equiv$ Wave function of particle
what is $\psi(x)$?
$|\psi(x)|^{2} d v=$ prob. of finding particle in volume de

$$
\int_{\text {AlI }}\left|\psi_{1}(x)\right|^{2} d v=1 \text { particle is someplace }
$$

space
Sub in V as appropriate + solve
for H Atom
muss generalized to Sd, spherical coordinates

$$
\begin{aligned}
& V(r) \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{|q|^{2}}{r^{2}}+\text { Solve } \\
& \frac{-\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \frac{r^{2} \frac{\partial(r)}{\partial r}+\frac{1}{r^{2}} \sin ^{2} \theta \frac{\partial^{2} \psi(r)}{\partial \varphi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\psi(r)}{\partial \theta}\right)}{}+\frac{1}{\left.4 \pi \epsilon_{0}\right|^{2}} \psi(r)=E \psi(r)\right.
\end{aligned}
$$

Now
solve

Probability distributions for several allowed atomic states for the 1-electron atom

Increasing n adds new radial layers, l=0 give spherical symmetry, I not 0 brings in angular dependence

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=1 state
has $m=1,0,-1$ components
expect to see this

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=0 state
Has $m=0$ component only
expect to see this

SURPRISE! ... fundamental particle have an intrinsic magnetic moment. Call it spin.

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=0 state
Has $m=0$ component only
Actually see this

Intrinsic spin - two varieties

Huge effect on

 multi-electronatoms
Fermions = half integralspin, sach as 1/2, 3/2, 5/2, ... , 73/2 ... protons, neutrons, electrons are all fermions ($\mathrm{s}=1 / 2$) no two fermions can occupy the same exact quantum state

Bosons = integral spin, such as 0, 1, 2 ... photons ($s=1$) and pions ($s=0$) are examples of bosons bosons can occupy the same exact quantum state

Rules for Filling of state for multi-electron atom $n, 1, m_{1}, m_{s}$

Spectroscopic notation - s : l=0, p: l=1, d: l=2, f: l=3, ...
$>$ No two electrons in same state (Pauli exclusion)
> Electrons go into the state with the lowest possible energy (Aufbau)
$>$ Within a sublevel, electrons will have their spin unpaired as much as possible (due to spin-spin interaction contribution to energy)

Chemistry now "solved"

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

- Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 123, No. 792 (6 April 1929)

Magnetic Resonance
Consider a current loop in a \vec{B} field
 or intrinsic spin

If we define \vec{B} to be along \tilde{z}

$$
\begin{aligned}
& U \equiv \text { energy of interaction of } \vec{\mu} \text { w } \vec{B} \\
& U=-\mu_{z} B
\end{aligned}
$$

$$
\vec{\mu}=-\frac{1}{2} \frac{e}{m} \vec{L}
$$

How Magnetic Moment of e^{-}in atom. depends on \vec{L} (orbital Angular moventiv)
For e^{-}in atom $l_{z}=m_{l} \hbar$

$$
\begin{aligned}
& \text { if } l=1 \quad m_{l}=-1,0,+1 \\
& l_{z}=-1 \hbar, 0,+\hbar \\
& \mu_{z}=\frac{e \hbar}{2 m} m_{l}
\end{aligned}
$$

Electron Spin resonance

Chemical
crud $\searrow \uparrow$ unpaired
$\bar{B}_{\text {local }}$ election

Scan field ... or Scan frequency

Max Born German $(1882-1970)$

1954 Nobel Prize in physics "For his fundamental research in quantum mechanics, especially for his Statistical interpretation of the ." wavefunction "
$\psi(x)$ wave function
$\Psi^{2}(x) \sim$ probability of finding particle in region of space

Once election hits the film/Detector we know with 100% centínty where the election hits -So wane function has to "collapse"

