Physics 114 - Spring 2015 - Workshop module 8

1) In each of the following specify the direction of the force on the positive charge Q. Specifically, write down the appropriate choice from the list: there is no force on Q ; into the paper; out of the paper; to the left (in the plane of the paper); to the right (in the plane of the paper); toward the top (in the plane of the paper); toward the bottom (in the plane of the paper).
a) Point p is in center of positive current loop shown in plane of paper. Q moves into the paper.

b) Point P lies outside of the positive current loop shown in the plane of the paper. Q moves to the right.
c) Current comes out of the paper toward you. Q moves upward in
 plane of the paper.

d) Current comes out of the paper toward you. Q moves to the right.

e) An electron moves to the right as shown while Q moves to the left.

2. The wire semicircles in the figure to the right have radii a and b . Calculate the net magnetic field (magnitude and direction) at the point P (at the center of the loops) due to the current I passing through the loop in the direction
 shown.
3. Two straight wires are perpendicular to the plane of this page.

One, located at point M , carries a positive current into the page. One, located at point N , carries a positive current out of the page. The vector that best represents the resultant magnetic field at point P is
a) 1
b) 2
c) 3
d) 4
e) none of these is correct.

4. A conductor is made in the form of a hollow cylinder with inner and outer radii a and b, respectively. It carries a current I , uniformly distributed over its cross section. Derive expressions for the magnitude of the magnetic field in the regions a) $\mathrm{r}<\mathrm{a}$; b) $\mathrm{a}<\mathrm{r}<\mathrm{b}$; c) $\mathrm{r}>\mathrm{b}$.
5. Consider a cylindrical, current-carrying shell. Referring to the sketch to the right, the shell carries a current I out of the paper spread over its surface area according to a current density $j(r)=K / r$, where K is a constant. The shell has inner radius R and outer radius $2 R$.
a) Determine the magnetic field in the region $r<R$ in terms of K, I, and R.
b) Determine the magnetic field in the region $\mathrm{R}<\mathrm{r}<2 \mathrm{R}$ in terms of K, I, and R

c) Determine the magnetic field in the region $r>2 R$ in terms of K, I, and R.
d) Show that $\mathrm{K}=\mathrm{I} / 2 \pi \mathrm{R}$

