Physics 114 – Spring 2015 – Problem Set 9

1) 28-3

- 2) 28-13
- 3) 28-18
- 4) 28-19
- 5) 28-26
- 6) 28-35
- 7) Review your class notes from March 19 where we did problem 28-31. Then do problem 28-32.
- 8)

A wire lies parallel to a conducting pipe of radius R and thickness ¹/₄ R. The wire lies at a distance of 3R from the center of the pipe. The wire and pipe are configured perpendicular to the paper, as shown below in a sketch. The pipe carries a uniform current of magnitude I directed into the paper. The current is in the region shown. That is to say, the interior of the pipe (r<3/4/R) is empty and carries no current.

(a) Determine the magnitude and direction of current in the wire which will cause the magnetic field at point P to be zero.

(b) Given your answer to part (a), what is the magnitude and direction of the magnetic field at the center of the current-carrying pipe?

9)	29-2	
10)	29-3	
11)	29-8	
12)	29-12	
13)	29-18	
14)	29-19	
15)	29-22	
16)	29-25	
17)	29-28	
18)	29-31	