Thin lenses and optical instruments

SM, Phy 123, Spring 2013

References and photo sources:

D. Giancoli, Physics for Scientists and Engineers, 3rd ed., 2000, Prentice-Hall

http://cvs.anu.edu.au (D. Denning and M. Kirk)

http://www.ebiomedia.com

NASA

Power of lens measured in diopters

$$P = \frac{1}{f}$$
 where f is focal length in meters

Power is positive for converging lenses and negative for diverging lenses

Magnification:

Lens equation:

Real image: rays actually pass thru image Virtual image: rays do not actually pass thru image

Sign convention is the tricky part, especially in multiple lens systems

Convention from Giancoli p. 841:

Focal length is + for converging lens and - for diverging lens

Object distance is + if on the side of the lens from which the light is coming (usual, unless in multi-lens system)

Image distance is + if on the opposite side of the lens from where the light is coming, if on same side, image distance is -

Image distance is + for real images and – for virtual images

Height of image is + if image is upright and – if image is inverted. Height of object is always taken to be +.

Aberrations

Spherical aberration

Chromatic aberration

A bee's eye view

Fig. 2.9. Resolution of the eyes of various animals measured physiologically and deduced from anatomical criteria compared to body height: (1) man; (2) peregrine falcon; (3) hen; (4) cat; (5) pigeon; (6) chaffinch; (7) rat; (8) bat (Myotis);
(9) frog; (10) lizard; (11) minnow; (12) dragonfly (Aeschna);
(13) bee (Apis); (14) Chlorophanus; (15) housefly (Musca);
(16) hover fly (Syrrita), frontal region FO; (17) jumping spider (Methaphidippus), anteromedian eye AM, postero-lateral eye PL;
(18) fruit fly, Drosophila. (From Kirschfeld 1976.)

Anableps - minnow

Magnifying glass

Refracting telescope

40 inch refractor – Yerkes Observatory

Reflecting telescope

-

Hubble Space Telescope

Hubble space telescope 2.4 m primary mirror Launched in April 1990 Optics "repair" in 1993

James Webb space telescope – 6.5 meter primary mirror Expected 2018 launch date

photometric performance, point source, 10σ in 10^4 s

From NASA: http://www.stsci.edu/jwst/science/sensitivity

Camera

Light vs. depth of field

Shutter speed

f-stop=f/D, each f-stop=factor of 2 in light intensity

Faster the object or darker the day, need slower speed and/or larger D

Larger D means narrower depth of field

Speed limited on the low end by movement of object or support platform (hand), on high end by technology and amount of light f-stop or f ratio Each stop differs by factor of 2 in light intensity Exposure goes as (time)(area opening) Amount of light goes as area, goes as diameter² So, stops differ in diameter of sqrt(2)~1.4

If lens has a 10 mm focal length, an aperture of 5 mm would give f/2 Same lens with aperture of 1.8 mm would give f/5.6

Larger maximum aperture, more light, faster lens (usually more expensive ... because more issues with controlling aberrations, I think)

Aperture diagram for different fstops

Whitepeak Obs. graphic

Slow exposure time (Note hand Motion)

Small opening large depth of field of focus fast Time longo opening Neverow Field of forms

Aberrations

