Physics 123. February 4,2013

Relativistic Energy-momantum 4 -vector

$$
\begin{array}{ll}
P_{0}=m M_{0}=m \gamma c=m \gamma c^{2} \\
P_{1}=m M_{1} & E / c \\
P_{2}=m M_{2} & \text { where } \\
P_{3}=m M_{3} & E \equiv m \gamma c^{2} \\
& \text { Relativistic } \\
\text { Energy }
\end{array}
$$

$$
\begin{aligned}
& P^{\mu} P_{\mu}=-\frac{E^{2}}{c^{2}}+m^{2} u^{2} \gamma^{2}=-\frac{E^{2}}{c^{2}}+p^{2}=-m^{2} c^{2} \\
& E^{2}=m^{2} c^{4}+p^{2} c^{2} \\
& E=m c^{2} \gamma=\frac{m c^{2}}{\sqrt{1-(v / c)^{2}}} \\
& \begin{array}{l}
\text { Taylor expennd } \\
\text { in pous } \\
\text { of } V / c \quad E
\end{array} \quad=m c^{2}+\frac{1}{2} m v^{2}+\frac{3}{8} m \frac{v^{4}}{c}-\ldots
\end{aligned}
$$

Doppler Shift

in proper frame $\begin{array}{ll}\text { of source } & \lambda_{s}\end{array} \nu_{s}$

Source + observer Approaching each other

- observer

Source

$$
\lambda=\lambda_{s} \sqrt{\frac{c-v}{c+v}} \quad \nu=\nu_{s} \sqrt{\frac{c+v}{c-v}}
$$

Source + observer
Moving away from each other
$\nu=\nu_{s} \sqrt{\frac{c-v}{c+v}}$

Welcome to the
Expanding
universe.'

Type la SN from Res, Press and Kirshner (1996)

Light travels from NYC to San Francisco in 1/100 second and it travels 1 Mpc in 3 million years

The Special Theory relativity
on the electrodynamics Wirtig autgentektrodynamik Maxwells - wie dienelbe gegenewegte Korper mo Asymmetrien fabrt, welcho den Phänomenen do elektrodynamische Wechselwirkung. Man denke z. R, an niten und einem Leiter. Das beobachtbare Phinomen hlingt ahirend nach der ablichen Auffassung die beiden Falle, daE der tine oder der andere dieser Körper der bewegte sei, streng ond fuht der Leiter, so entsteht in der sich nhmolich der Magnet cin clektrisches Feld von gewissem Energiewerte, welohes an den Orten, wo sich Teile des Leitera befinden, einen Strom erseust. Ruht aber der Magnet und bowegt sich der Loiter, Feld, tohgegen im Unagebung des Magneten kein elektrisches as sich keine Energie entspricht, die aber - Gleioh Nher Rulativbewegung bei don beiden ins Auge gefaBten orausgretat - zu elektrischen Strṑmen von derselben tios elektischen Krafte

Beisjielo Kabnlicher Art, sowie die millungenen
(10) Bewegung der Erde relativ zum „Tichtwedium ${ }^{* 4}$ zu kot Whelen fuhen zu der Vermutung, das dem Begrifie der Q. Klektro tynamik keine Eigensehaften der Erscheinungen ent--cliche die mechanischen Gleichungen gelten, auch die (0 elel trodynamischen und optischen Gesetzo gelten, wie dieso Vermutung (deren Inbalt im folgenden „Pribzip ermutung (deren Inbalt im folgenden „Prinzip
genannt werden wird) zur Voraussetzung orerdem die mit ibm nur sebeinbar unverträgliche

The general Theory
of relativity

accelerated reference frames II gravitational field

Einstein's Equivalence Principle

Simple Harmonic Motion

$$
\begin{aligned}
& F \propto x \text { Spring constant } \\
& F=k x \\
& \vec{F}=-k \vec{x} \\
& F=k x
\end{aligned}
$$

$$
\begin{aligned}
& F=-k x \\
& m a=m \frac{d^{2} x}{d t^{2}}=-k x \\
& m \frac{d^{2} x}{d t^{2}}+k x=0 \\
& \frac{d^{2} x}{d t^{2}}+\frac{k}{\mu} x=0 \quad \text { simple Hamonel } \\
& \text { Motion }
\end{aligned}
$$

$$
\begin{aligned}
& A_{x}=A \cos \theta=A \cos \omega t \\
& A_{y}=A \sin \theta=A \sin \omega t
\end{aligned}
$$

simple pendulum

$$
m a_{\perp}=-m g \sin \theta
$$

$$
\begin{aligned}
& \frac{m d^{2} s}{d t^{2}}=-\frac{m g s}{l} \\
& \frac{d^{2} s}{d t^{2}}+\frac{g}{l} s=0 \\
& \quad \text { sHO wT } \omega^{2}=\frac{g}{l}
\end{aligned}
$$

