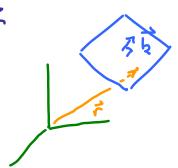
Physics 123 - March 25, 2013

Last Time



Plane wave in 3-D

$$Y(\vec{r},t) = e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

|k| = 211

Satisfies 3D Wove equation

$$\nabla^2 \psi(\vec{r},t) = \frac{1}{V^2} \frac{\partial^2 \psi(\vec{r},t)}{\partial t^2}$$

Interference

Interference Stable when Sources are coherent

Some frequency, Constant
phace Difference

Wavefront Splitting

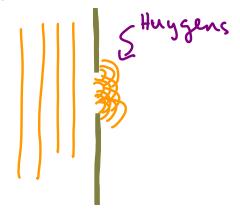
Amplitude splitting

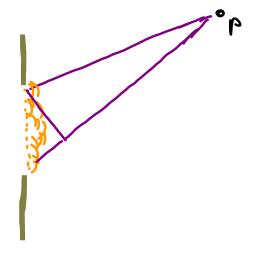
Double Slit

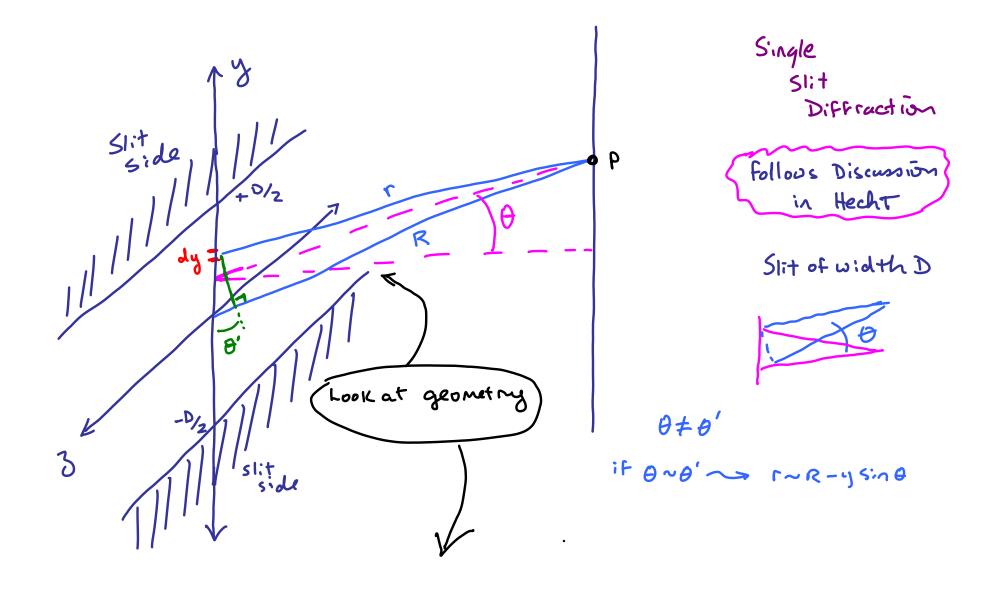
Double Slit

Won't repeat here

Diffraction







$$\Gamma^2 = R^2 + y^2 + 2Ry \cos \psi \quad (Law of Cosines)$$

$$\theta' = 90^\circ - \psi$$

$$\cos \psi = \sin \theta'$$

EXPAND USING
$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} ...$$

$$Le^{+} = (\frac{1}{2})^{2} - 2(\frac{1}{2})^{2} ...$$

$$Le^{+} = (\frac{1}{2})^{2} - 2(\frac{1}{2})^{2} ...$$

I small, Drop terms O(2)

$$\int_{R} = \left[1 + \left(\frac{y}{R}\right)^{2} - \frac{2y}{R} \sin\theta'\right]^{\frac{1}{2}}$$

$$T = R - y \sin\theta' + \frac{y^2}{2R} \cos^2\theta + \cdots$$

some as
$$\theta \sim \theta'$$

Fraunhofer condition

Phase of Amplitude contributions linear in Aperture variables

dy 1111 E = Source structh

Amplitude contr.

r~R in Amplitude (Not in phase!)

$$E_{p} = \int \underbrace{\mathcal{E}}_{R} \operatorname{Sin} \left[\operatorname{cot} - k(R - y \sin \theta) \right] dy$$

let
$$A = \omega t - kR$$
 $B = ky sin\Theta$

$$Sin(\omega t - kR) Cos(ky sin\Theta) + Cos(\omega t - kR) Sin(ky sin\Theta)$$

$$E_{P} = \int_{R}^{D_{Z}} \sum_{Sin(\omega t - kR)} cos(ky sin\Theta) dy$$

$$E_{P} = \int_{R}^{D} \sum_{Sin(\omega t - kR)} cos(ky sin\Theta) dy$$

$$E_{P} = \sum_{R}^{D} \sum_{Sin(\omega t - kR)} \sum_{Sin(ky sin\Theta)} \sum_{Sin(\omega t - kR)}^{D_{Z}} \sum_{Sin(\omega t - kR)} \sum_{Sin(\omega t - kR)}^{D_{Z}} \sum_{Sin(\omega t - kR)}^{D_{Z}$$

get cos in S even in y Term -> 0 as integrate bet - Dz -> Dz

$$E_{p} = \frac{ED}{R} \frac{Sin}{B} \frac{Sin}{CUt-RR}$$

$$\frac{S}{Z} = \frac{RD}{Z} \frac{Sin}{B}$$

$$I(\theta) = \langle E^{2} \rangle = \frac{1}{Z} \frac{(ED)^{2}}{R} \frac{Sin}{B}^{2}$$

$$I(\theta) = \langle E^{2} \rangle = \frac{1}{Z} \frac{(ED)^{2}}{R} \frac{Sin}{B}^{2}$$

$$I(\theta) = I(\theta) = I(\theta) \frac{Sin}{B} \frac{Sin}{B}$$

$$I(\theta) = I(\theta) \frac{Sin}{B} \frac{Sin}{B}$$

$$\frac{dI}{d\beta} = I(0) \left\{ \frac{2 \sin \beta}{\beta^3} \left(\beta \cos \beta - \sin \beta \right) \right\} = 0$$

$$\frac{d\Sigma}{d\beta} = 0 \quad \text{if} \quad Sin\beta = 0$$

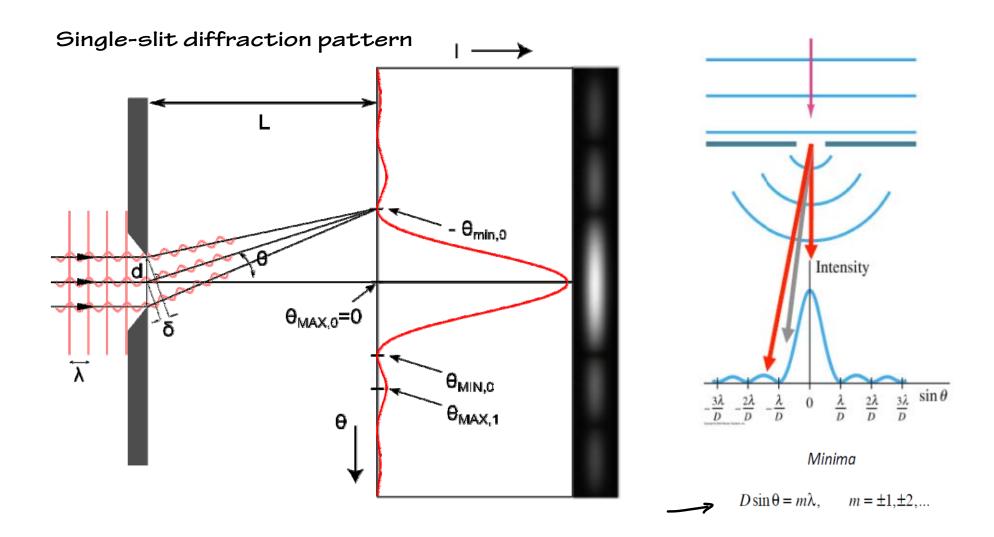
$$\frac{d\Sigma}{d\beta} = 0 \quad \text{if} \quad Sin\beta = 0$$

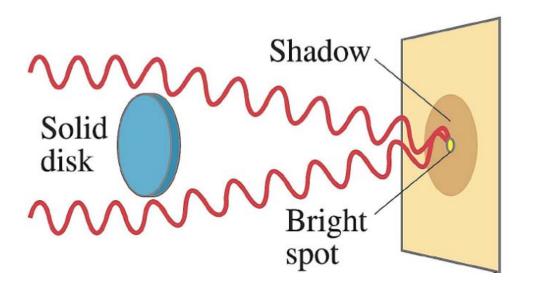
$$\sum_{M=\pm 1,\pm 2,...} M = \pm 1,\pm 2 \dots$$

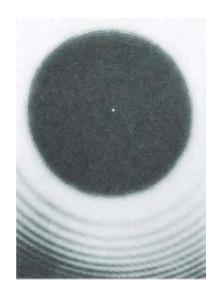
at
$$m=0$$
 /im $sin\beta$ $\sim \frac{cos\beta}{1} = 1$

B COSB - 5:1B =0

Minimu $\beta = m\pi$ $\frac{kD}{2} \sin \theta = m\pi$ $\frac{2\pi}{2} \cos \theta = m\pi$ $\frac{2\pi}{2} \cos \theta = m\pi$ $\frac{2\pi}{2} \cos \theta = m\pi$



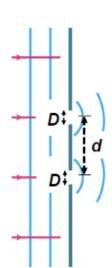




Diffraction and two slits ...

In Young's double-slit experiment we assumed *infinitesimally narrow* slits. This can never be the case for real slits and diffraction must be included.

included.



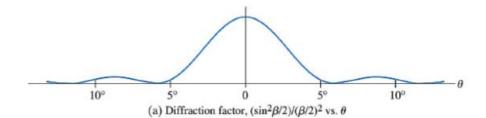
$$E_{\theta} = E_{0} \frac{\sin \beta / 2}{\beta / 2} \qquad ; \qquad \begin{cases} E_{\theta,0} = 2E_{0} \cos \frac{\delta}{2} \\ \delta = \frac{2\pi}{\lambda} D \sin \theta \end{cases} \qquad ; \qquad \begin{cases} E_{\theta,0} = 2E_{0} \cos \frac{\delta}{2} \\ \delta = \frac{2\pi}{\lambda} d \sin \theta \end{cases}$$

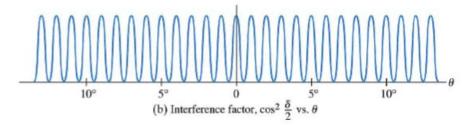
Diffraction factor

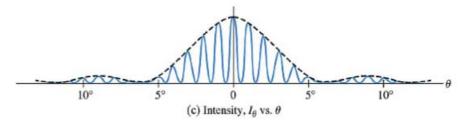
Interference factor

$$\to E_{\theta,0} = 2E_0 \left(\frac{\sin \beta/2}{\beta/2}\right) \cos \frac{\delta}{2}$$

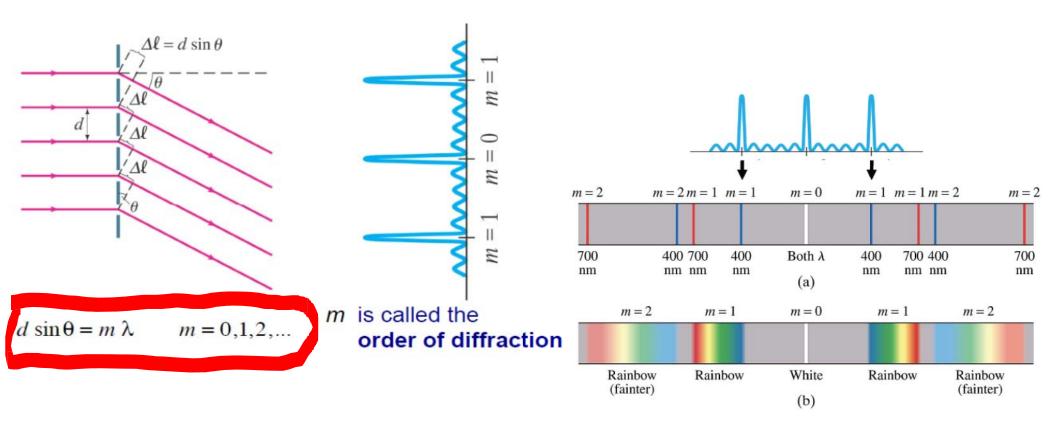
$$\rightarrow I_{\theta} = I_{0} \left(\frac{\sin \beta / 2}{\beta / 2} \right)^{2} \left(\cos \frac{\delta}{2} \right)^{2}$$



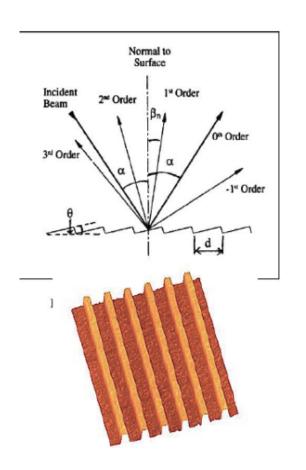


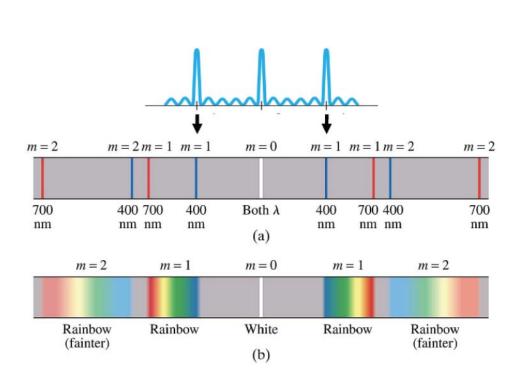


Many slits ... Diffraction gratings

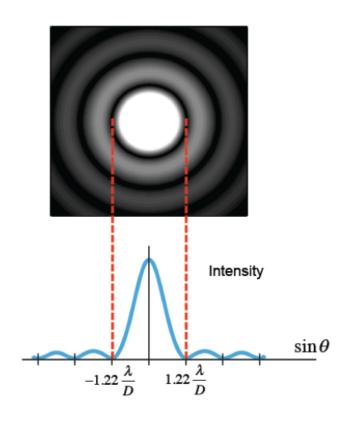


Many slits ... Diffraction gratings

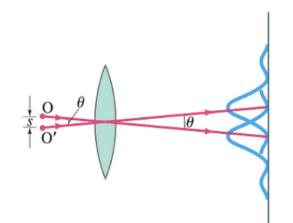




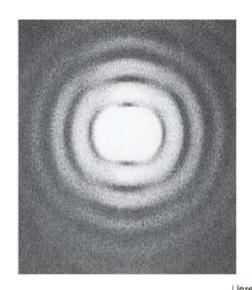
Resolution limits

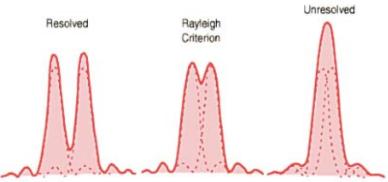


The Rayleigh criterion states that two images are just resolvable when the center of one peak is over the first minimum of the other.

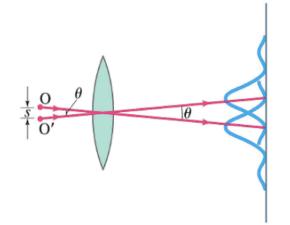


$$\theta = 1.22 \frac{\lambda}{D}$$

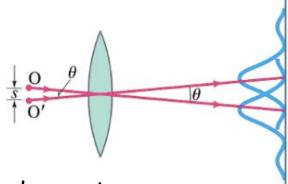




The Rayleigh criterion states that two images are just resolvable when the center of one peak is over the first minimum of the other.



$$\theta = 1.22 \frac{\lambda}{D}$$



for minoscope

$$\frac{S}{F} = 1.22 \frac{\lambda}{D}$$

$$S = 1.22 \frac{\lambda}{D} f$$

Cannot image
things
Smaller
than
the wavelength
used

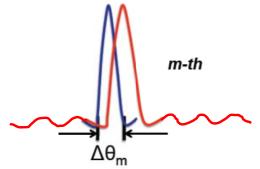
Resolving Power for grating

Gratings used for Spectral analysis - important to cleanly

separate two Spectral lines

at what so are lines clearly resolved?

principle max. of one line falls = distance to first minimum for other (Rayleigh again)



Resolving Power for grating
$$R = \frac{\lambda}{\Delta \lambda} = N M$$

Resolving Power for grating "Rulings"

