Physics 123 - April 22, 2013

Time Independent Schödinger equation (ld, nourelativistic)

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)
$$

$|\psi(x)|^{2} d v \equiv$ probability of finding particle in $d v$ $\int_{\substack{\text { all } \\ \text { Space }}}|\psi(x)|^{2} d v=1 \quad$ Particle is Someplace

Sub in for V, solve for ψ and E

H atom

$$
\rightarrow \vec{r} \rightarrow e^{-} \quad V(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{|e|^{2}}{r^{2}}
$$

Shr. equ in $3 d$

$$
\underbrace{3 d}-\frac{\hbar^{2}}{2 M} \nabla^{2} \psi+V \psi=E \psi
$$

plug in V and solve need to was spherical polar coordinates

Spherical Coordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta \\
& \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}= \\
&=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
& \rightarrow \psi(r, \theta, \varphi) \\
V(r)=-\frac{1}{4 \pi \epsilon_{0}} \frac{|e|^{2}}{r^{2}} \\
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \varphi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial \psi}{\partial \theta}\right]-\frac{1}{4 \pi t_{0}} \frac{|e|^{2}}{r^{2}} \psi=E \psi
\end{array}
$$

Now Solve

Can be solved exactly...

$$
\psi(r, \theta, \varphi) \rightarrow \psi(R) \psi(\Theta) \psi(\Phi)
$$

can separate Sch. equation into egos for $\psi(R), \psi \Theta, \psi(\bar{D})+$ Solve "Energy " or "principle" quantum \# $n=1,2,3 \ldots$
"orbital" quantum $4=\quad l=0,1, \cdots n-1$
Table 7.1 spae Hydrogen Atom Wave Functions $-l,-\mid \ell-11, \cdots 0,1, \cdots, l-1,1$

$$
\begin{array}{llll}
& \Psi_{n, l, m_{l}}(\mathbf{r})=R_{n, l}(r) Y_{l, m_{l}}(\theta, \phi) \\
n=1 & l=0 & m_{l}=0 & \psi_{100}=\frac{2}{\sqrt{r_{0}^{3}}} e^{-r / r_{0}} \sqrt{\frac{1}{4 \pi}} \\
n=2 & l=0 & m_{l}=0 & \psi_{200}=\frac{1}{\sqrt{2 r_{0}^{3}}}\left(1-\frac{r}{2 r_{0}}\right) e^{-r / 2 r_{0}} \sqrt{\frac{1}{4 \pi}} \\
n=2 & l=1 & m_{l}=+1 & \psi_{211}=\frac{1}{2 \sqrt{6 r_{0}^{3}}}\left(\frac{r}{r_{0}}\right) e^{-r / 2 r_{0}} \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \varphi} \\
n=2 & l=1 & m_{l}=0 & \psi_{210}=\frac{1}{2 \sqrt{6 r_{0}^{3}}}\left(\frac{r}{r_{0}}\right) e^{-r / 2 r_{0}} \sqrt{\frac{3}{4 \pi}} \cos \theta \\
n=2 & l=1 & m_{l}=-1 & \psi_{21-1}=\frac{1}{2 \sqrt{6 r_{0}^{3}}}\left(\frac{r}{r_{0}}\right) e^{-r / 2 r_{0}} \sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \varphi p}
\end{array}
$$

Probability distributions for several allowed atomic states for the 1-electron atom

Increasing n adds new radial layers, l=0 give spherical symmetry, I not 0 brings in angular dependence

Only discrete energies and spatial sites allowed for the election to occupy \rightarrow orbital

figure from h Hpp:/len.wik:pedia.org/wik:/File: Hydrogen_Density_Pots. pry

Hydrogen $z=1$
Helvin $z=2$
Lith.in $z=3$

$$
z=120
$$

O Z protons
0 \& $(A-Z)$ neutions 0

Basic Stinctur of atom

as Z increases \rightarrow elections increase个
\#protons in nucleus
Hows do these elections populate the available orbitals?
To Answer this we Need to investigate

STern-Gerlach experiment - 1922
\rightarrow Discovery that electrons have Spin

Diagram from Wikipedia
"If this nonsense from Bohr will Prove to be right we will quit physics." (Stem vowed in 1913) asquoted in Phys. Today $\operatorname{Dec} 03$

Walther Gerlach from phys Today antizle (Dec. 03)

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=1 state
has $m=1,0,-1$ components

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=0 state
Has m=0-component only

SURPRISE! ... fundamental particle have an intrinsic magnetic moment. Call it spin.

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e - beam in $\mathrm{l}=0$ state
Has $m=0$ component only

Particles hove intrinsic Spin

Spin is quantized

$$
0,1 / 2,1,3 / 2,2,5 / 2
$$

Intrinsic spin - two varieties

Huge effect on

multi-electron
atoms
Fermions = half integral spin, s/ach as $1 / 2,3 / 2,5 / 2, \ldots, 73 / 2 \ldots$ protons, neutrons, electrons are all fermions ($s=1 / 2$) no two fermions can occupy the same exact quantum state

Bosons = integral spin, such as $0,1,2 \ldots$
photons ($s=1$) and pions ($s=0$) are examples of bosons bosons can occupy the same exact quantum state

Rules for Filling of state for multi-electron atom

 $n, 1, m_{1,} m_{s}$Spectroscopic notation - s: l=0, p: l=1, d: l=2, f: l=3, ...
$>$ No two electrons in same state (Pauli exclusion)
$>$ Electrons go into the state with the lowest possible energy (Aufbau)
$>$ Within a sublevel, electrons will have their spin unpaired as much as possible (due to spin-spin interaction contribution to energy)

TABLE 39-1 Quantum Numbers for an Electron

Name	Symbol	Possible Values
Principal	n	$1,2,3, \cdots, \infty$.
Orbital	ℓ	For a given $n: \ell$ can be $0,1,2, \cdots, n-1$.
Magnetic	m_{ℓ}	For given n and $\ell: m_{\ell}$ can be $\ell, \ell-1, \cdots, 0, \cdots,-\ell$.
Spin	m_{s}	For each set of n, ℓ, and $m_{\ell}: m_{s}$ can be $+\frac{1}{2}$ or $-\frac{1}{2}$.

P.A.M. Dirac - on the development of quantwn Mechanics "The underlying laws necessary for the mathematical theory of a large part of physics and the whole of chemisting are thus completely knows.

Check out
http:www.chemicool.com
Interactive periodic chart

$i 0_{\text {gich }}^{i-2}$

そ $e_{e}^{-} \bar{z}$

Covalent bond

