Physics 123 Blistering conceptual overview of particle physics and cosmology

S. Manly Univ. of Rochester

May 1, 2013

0

The intimate relationship between the very big and the very small

Inquiring minds want to know ...

Fermi National Accelerator Laboratory (near Chicago)

Stanford Linear Accelerator Center

Event display from the SLD experiment at SLAC

What forces exist in nature?

What is a force?

How do they interact?

How do forces change with energy or temperature?

How has the universe evolved?

Mini-Ph.D. – Quantum Mechanics 101

Lesson 1:

Size actually does matter.

Determine the postion and velocity of a car ... no problem

Determine the postion and velocity of a small particle ... no problem

Problem! Heisenberg uncertainty principle Cannot have perfect knowledge of both the position and velocity

Heisenberg

The fundamental nature of forces: virtual particles

GNANTUM Field Theory -> Exchange force

http://particleadventure.org/

http://hepwww.rl.ac.uk/Pub/Phil/ppintro/ppintro.html

STANDard Model of Particle Physics ure.org/ uk/Pub/Phil/ppintro/ppintro.html of information

The Fundamental particles 11

The Standard Model of Particle Interactions

Three Generations of Matter

Same mass - Opposite electric charge and magnetic moment

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction	
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons	
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	
Strength at $\int_{0}^{10^{-16}} m$	10 ⁻⁴¹	0.8	1	25	
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10-4	1	60	

Baryons qqq	and	Antil	baryons	q̄q̄q
Baryons a	ire fer	mionic	hadrons.	

These are a few of the many types of baryons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2
p	antiproton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω-	omega	SSS	-1	1.672	3/2

other particles

Mesons q q Mesons are bosonic hadrons These are a few of the many types of mesons.						
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	
π+	pion	ud	+1	0.140	0	
K-	kaon	sū	-1	0.494	0	
ρ+	rho	ud	+1	0.776	1	
\mathbf{B}^0	B-zero	db	0	5.279	0	
η _c	eta-c	cē	0	2.980	0	

Quantum Chromodynamics QCD

> Why bare quarks have never been observed.

— energy density, temperature

nucleon-nucleon force - exchange of it (pion)

2010 APS J.J. Sakuri Prize Winners

Tom Kibble Gerald Guralnik UR's own Carl Hagen Francois Englert Robert Brout

10 December 1979. Salam receives the Nobel Prize from King Carl XVI Gustav of Sweden.

Oops ... woohoo! There it is! LHC 125-ish GeV

Stanford Linear Accelerator Center

In the 1990's physicists studied the W and Z in minute detail in experiments at SLAC (SLC) and CERN (LEP)

The Standard Model passed with flying colors.

On to the very big ...

Spiral Galaxy NGC 3370

Telescopes are time machines

1 Mpc= 1 Megaparsec = $3x10^{22}$ m 1 light year = $9x10^{15}$ m

Light travels from NYC to San Francisco in 1/100 second and it travels 1 Mpc in 3 million years

Vesto Slipher (1875-1969) Lowell Observatory discovers a strange thing in 1912 ...

Most nearby galaxies are moving away from us

Made use of the Doppler shift in atomic spectra

Check out http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/doppler.htm

Edwin Hubble (1889-1953) and Milton Humason (1891-1972) at Mount Wilson Observatory combine Hubble's distance measurements (Cephied variable stars) with Slipher's reshift information and discover ...

Humason (from AIP) Galaxies that are further away are moving away from us faster

Hubble's Law V=Hd

Light travels from NYC to San Francisco in 1/100 second and it travels 1 Mpc in 3 million years

Welcome to the "expanding universe"!!

extrapolate back in time find the age of the universe → 13.7 billion years.

Type Ia SNe from Riess, Press and Kirshner (1996)

Think of the universe as more like a butt than a zit ...

Hot Big Bang Theory – some of the players

General Relativity

Einstein

Expanding universe Robert Walker Howard Robertson

Big Bang nucleosynthesis

Friedmann

Very hot, dense primordial soup of fundamental particles

At 0.000001 second after bang, protons and neutrons form

At 3 minutes, light nuclei form

Modern accelerators study processes at energies that existed VERY early in the universe

Another form of time travel !

Why Believe? ... $R_{\mu\nu}$ -... in the HOT Big BANG? $V_2 g_{\mu\nu} R =$ $8\pi GT_{\mu\nu}$ - N. Kell 10⁻¹⁵ m =10⁻¹⁵ m 10⁻¹⁰ m formation of formation of dispersion of Big quark-gluon proton & neutron today star Bang formation massive elements plasma formation low-mass nuclei neutral atoms >10¹² K 10¹² K 10⁹ K 20 K-3 K <20 K-3 K 3 K 4.000 K Tuniverse $15 \times 10^9 \mathrm{yr}$ $1 \times 10^9 \text{yr}$ $>1 \times 10^9 \text{ yr}$ 10-6 s time 10-4 s 3 min 400,000 yr

Cosmic Microwave Background Penzias and Wilson - 1964

Uniform and isotropic – in as far as they could measure

Observe light from Time universe became Transporent T~ 400,000 years

Perfect blackbody all directions in cky

Cosmic Microwave Background Penzias and Wilson - 1964

- in as far as they could measure

Amount of light nuclei in interstellar/intergalactic space agrees w7 expectation from Big Bang Nucleosyntheses T~3 Minutes

nonstatic universe expected from Relativity

Relativity allows terent Relativity allows terent Space to how of the S. ? Curred geometries ? Curred geometries ? Which is on united? Which is on united? Which is on united? That space is special Flat spece is care.

And Lin

(Harton)

I dea used by Many Cosnological theories to solve Basic Problems wy Big Bang Model InFlationary Big Bang

Models

Andy

Albrecht (uc onis)

Paul Steinhardt (Princeton)

Alm Guth (MIT)

Singularity Flatness quantum Fluctuation possibly in endless Inflution concept Saluas maior Problems Fractal-like Stream yunnes with Bang cosmologer No matter how Inflation curved is space, Blow it up large mongh and will look flat quantur universe starts out purctuation Structure Very Sonall and causally consided during + before inflation become donsity fluctuations in Horizon CMB + Early universe lending to large-Scale Structure

Incredible New data in the last 10 years

Fluctuations in the Temperature /color of the CMB (1 part in 10⁵) Cobe Schellites universe is "flat" Expansion of the universe is Accelerating observations of supernovae in distant galaxies Two go sint Supernova Cosnology Project Perlmutter at UC Berkeley Migscinst High - Z Team

Very exciting development in last decade Observed fluctuations in the CMB temp

WMap data on the temperature fluctuations in the CMB

GEOMETRY OF THE UNIVERSE

OPEN

Fluctuations largest on half-degree scale

FLAT

Fluctuations largest on 1-degree scale

CLOSED

Fluctuations largest on greater than 1-degree scale

We seem to be missing most of the mass in the universe!

Bullet cluster Colliding galactic clusters

galaxies + Duk Matter Z:p Past

intergalactic gas slowed down

"Power spectrum" (size) of temperature fluctuations sensitive to different matter/energy components of the universe

95% of the universe is unknown!

Many, many missing pieces ...

What is the nature of dark matter? What is the nature of dark energy? What does what the Higgs does in the Standard Model? Do we know about all of the fundamental particles that exist? Why 3 families?

Why is the mass spectrum of fundamental particles as it is? Why is the universe matter instead of antimatter?

Recent progress! But, as usual in science, we have new puzzles ...

We live in exciting times!

