Physics 123 - Spring 2013 - Problem Set 2 - Due January 31, 2013

1. $36-15$
2. $36-35$
3. $36-37$
4. $36-40$
5. $36-41$
6. $36-43$
7. $36-52$
8. 36-53
9. Evaluate

$$
\left[\begin{array}{ccc}
-2 & 4 & 3 \\
12 & -5 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
5 & 6 & -1 \\
10 & 3 & 8 \\
7 & 2 & 1
\end{array}\right]
$$

10. What is the Lorentz transformation matrix that transforms spacetime coordinates in reference frame S to a reference frame S^{\prime} moving at $0.8 c$ in the $+x$ direction relative to frame S ? Determine the coordinates in S^{\prime} for an event that occurs in S at $x=3, y=-2$, $z=10, \mathrm{ct}=7$ using the transformation matrix method. Assume units of meters and seconds.
11. Two event in frame S occur at coordinates give by spacetime 4-vectors $A=\left(x_{0}=5, x_{1}=3\right.$, $\left.x_{2}=6, x_{3}=-2\right)$ and $B=\left(x_{0}=2, x_{1}=300, x_{2}=4, x_{3}=-220\right)$, respectively. Determine the invariant interval between these two events. (units in meters and seconds)
