Physics 142 - Fall 2010 - Workshop module 8

1. A rigid, circular loop of radius R and mass M carries a current I and lies in the xy plane on a rough, flat table. There is a horizontal magnetic field of magnitude B. What is the minimum value of B such that one edge of the loop will lift off the table?
2. Find the magnetic field at the point P due to the current I .

3. In most parts of the northern hemisphere the earth's magnetic field has a vertical component directed into the earth. An airplane flying east generates an emf between its wingtips. Which wingtip acquires an excess of electrons, and which a deficiency? Explain.
4. Find the magnetic field at the point P due to the current I .

5. A conductor is made in the form of a hollow cylinder with inner and outer radii a and b, respectively. It carries a current I , uniformly distributed over its cross section. Derive expressions for the magnitude of the magnetic field in the regions a) $\mathrm{r}<\mathrm{a}$; b) $\mathrm{a}<\mathrm{r}<\mathrm{b}$; c) $\mathrm{r}>\mathrm{b}$.
6. Two closely wound circular coils have the same number of turns, but one has twice the radius of the other. How are the self-inductances of the two coils related?
