Final Exam (December 20, 2010)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given.

Problem 1/g/pts): 12 pTS
In the following, four physical situations are sketched for you. In each case determine the direction of the force or current as requested. Your choices in each case are: zero, left, right, up, down, into paper, out of paper, clockwise, counter-clockwise.


Determine the direction of the force on the electron moving in the magnetic field as shown.

$$
\vec{F} \text { is }{\underset{\text { into }}{ }}_{\text {paper }}
$$



A rod slides on conducting rails at speed $v$ in a magnetic field as shown. Determine the direction of the current induced in the resistor as shown (if any).
current is induced to left through resistor.
Also Accept clockwise

 Three currents of magnitude I are situated
the points of an equilateral triangle in the plane of the paper. The currents $I$ are perpindicular to the plane of the paper and are in the directions shown. Determine the direction of the force (if any) on a fourth current $i$ coming out of the paper at the center of the triangle.

$$
B \text { at cement in middle' is to Rich }
$$

So $\vec{F}$ on $i$ is up (on paper) $\uparrow$

Problem 2 (4 pts):
If the resistance for a simple series RLC circuit is increased, the resonant frequency of that circuit (provided it still readily oscillates)
a) Is increased.
b) Is decreased
(c) Remains unchanged
d) Insufficient information is give for a response.

Problem 3 ( Ats):



A spherical balloon contains a positively charged particle at its center. As the balloon is inflated to a greater volume while maintaining the charged object at the center,
a) the electric potential at the surface of the balloon increases while the electric flux through the balloon's surface decreases.
b) the electric potential at the surface of the balloon increases while the electric flux through the balloon's surface increases.
c) the electric potential at the surface of the balloon decreases while the electric flux through the balloon's surface decreases.
d) the electric potential at the surface of the balloon decreases while the electric flux through
the balloon's surface increases.
(e) None of the above is correct.

$$
7
$$

Problem 4/8 pts, show work):
Flux is wished


Biff the spacefarer travels to the Centaur star system 4.5 light years away at a speed of 0.9 c . How long does it take Biff to travel to the Centauri star system in Biff's frame of reference?

$$
\gamma=\frac{1}{\sqrt{1-(0.9)^{2}}}=2.3
$$

4.5 ly is distance in Earth's Forme

$$
\begin{aligned}
& \text { it is proper length } \\
& \text { this problem } \\
& 4.5 l_{y} \\
& d_{\text {Earth }}=d_{\text {Biff }} \gamma \\
& d_{\text {Biff }}=\frac{4.5}{2.3}=\underset{1.9}{1.96} \mathrm{ly}
\end{aligned}
$$

Biff percienesstan system to be 1.4 ly distance due to relativistic length contraction

$$
d=v t \quad \frac{1.9 \mathrm{ly}}{0.9 c}=\frac{1.96}{0.9}=\frac{2.17 \text { yours }}{t=d / v}
$$

Time Biff peacienes tip to take


An object in water is 0.5 meters from a concave "air lens" with a focal length 0.3 meters.
Assume the index of refraction of air is 1 and the index of refraction of water is 1.33 . The air lens is a shaped cavity of air immersed in the water.
a) Is the image of the object real or virtual?

Acts as conversing lens. So image will be real in this case
b) Where is the image located?


$$
\begin{array}{r}
\frac{1}{i}+\frac{1}{0}=\frac{1}{f} \\
\frac{1}{i}+\frac{1}{.5 m}=\frac{1}{.3 m}
\end{array}
$$

lens is conversing

$$
i=0.75 \mathrm{~m} \text { to right of Air leas }
$$

$$
\begin{aligned}
& \text { How much work is required to assemble four }-3.0 \mathrm{nC} \text { charges at the corners of a square of side } \\
& \begin{aligned}
P=V I=I^{2} R=V^{2} / R \quad & \frac{120 \mathrm{~V}^{2}}{4004 \pi}=R_{40}
\end{aligned}=360 \Omega \\
& \text { Problem } 6 \text { ( } 8 \text { pts, show work): } \\
& \text { More power bulb } \\
& .04^{2}+.04^{2}=d^{2} \\
& d=.057 m \\
& \text { Bris in } 2 \\
& \begin{array}{l}
w=0 \\
w=q V=(-3 n c)\left(\frac{3 n c)}{.04} k^{-9 \times 10^{9}}=2 \mu J\right.
\end{array} \\
& \text { Bringing } W=2 \mu \mathrm{~J}+\frac{\left(\begin{array}{l}
\text { nc)(3nc) } 9 \times 10^{9} \\
.057 \\
1.4
\end{array}=3.4 \mu \mathrm{~J}\right.}{1.4} \mathrm{~F} \\
& \text { Bring in } \omega=2+2+1.4=5.4 \mu \mathrm{~J} \\
& \text { Problem } 7 \text { (8 pts): }
\end{aligned}
$$

Problem 8 (8 pts):
a) Pure water is colorless and transparent, yet you can easily see water drops if you spill several onto a glass table. Briefly explain why this is so.
The water droplet presents a curved refractive surface. So rays of light passim g through a chop are refracted calesing images to seen distorted as you look at the drop.
b) Would you expect a diamond to have more or less sparkle when immersed in water relative to air? Briefly explain your answer. Assume the thickness of the water is not a factor. That is to say assume the same amount of light is incident on the diamond in air
 or in water.
as $n_{1}$ gets lancer than $n_{2} \theta_{c}$ is suckle


Problem 9 ( 8 pts , justify your answer):
$\hat{T}_{\text {air orbits }}$ the suckle $\theta_{c}$ lends to more
dicams) air or units internal reflection inside the diamond

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}}
$$ passes at the buck). Belutine fo a ${ }^{2}$, $n_{w a t e n}$ is bigger and $\theta_{c}$ is langer - less sparkle.

A capacitor of area A and plate separation D is fully charged across a potential difference of V and placed in series with and inductor of inductance L, causing LC oscillations to occur. While the LC oscillations are continuing in this resistance-free circuit, the distance between the capacitor plates is increased to 2D.
a) How will the frequency of the LC oscillations in this circuit change when the plate

$$
C=\frac{\epsilon_{0} A}{d}
$$ separation is increased to 2 D ?

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\Gamma_{L C}} \\
& c=\frac{\left(\epsilon_{0} A\right.}{d_{b)}}
\end{aligned}
$$

b) Relative to the initial situation, while the LC oscillations are continuing, how will the frequency of the LC oscillations in this circuit change if the space between the capacitor's plates are filled with a dielectric with dielectric constant $\mathrm{K}=4$.

$$
c^{\prime} \rightarrow K C=4 c \quad \omega_{\text {New }}=\frac{1}{\sqrt{L 4 C}}=\frac{w_{0}}{2}
$$

Problem 10 (8 pts, justify your answer):
A beam of polarized light is sent through a system of two polarizing sheets. Relative to the polarization direction of that incident light, the polarizing directionsflethe sheets are at angles $\theta$ for the first sheet and 90 degrees for the second sheet. If $10 \%$ of the incident intensity is transmitted by the two sheets, what is $\theta$ ?


$$
I=I_{0} \cos ^{2} \theta \sin ^{2} \theta \longrightarrow I=I_{0} \frac{\sin ^{2} 2 \theta}{4}
$$

$$
\sin 2 x=2 \sin x \cos x
$$

$$
0.11=\frac{\sin ^{2} 20}{4}
$$



Problem 11 ( 8 pts , justify your answer):
The large radio telescope in Arecibo, Puerto Rico has been used to search for extra-terrestrial intelligence. The radio telescope has a diameter of 1000 feet $=304.8$ meters. According to one of the researchers in Arecibo, the telescope can detect a signal that lays down over the surface of the Earth a power of 1 picowatt ( $1 \times 10^{-12}$ Watts). If a signal emanating from the center of our galaxy ( $2.2 \times 10^{4}$ light years distant) were detected, what is the minimum power of the source of the signal (assuming the source radiates equally in all directions)? The radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$ and the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.


Problem 12 ( 10 pts , justify your answer):
An infinitely long, current-carrying wire is bent into the shape shown in the sketch below. The straight part of the wire is infinite in both directions. The circular parts of the geometry are centered on the point P . The radius of the smaller circle is " a ". The radius of the larger circle is " $b$ ". Show that the magnetic field is zero at point P if $\mathrm{a} / \mathrm{b}=\pi /(\pi+1)$.

Decompose problem into $\vec{B}$ from gaits


B From Circle of radius b $P$ use Biot-scout

$$
\begin{aligned}
& d B=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{l} \times \hat{r}}{r^{2}} d=\frac{\mu_{0}}{4 \pi} \frac{I 2 \pi b}{b_{0}^{2}}=\frac{I \mu_{0}}{2 b} \text { out } \\
& B={ }_{0}
\end{aligned}
$$

Bfrom circle of radius a use Biot-sumut

$$
B=\frac{I \mu_{0}}{2 a} \hat{i n}
$$

$B$ at $P=0$

$$
\begin{aligned}
& \frac{\mu_{0} I}{2 \pi b}+\frac{\mu_{0} I}{2 b}-\frac{\mu_{0} I}{2 a}=0 \\
& \frac{1}{2 \pi b}+\frac{1}{2 b}-\frac{1}{2 a}=0
\end{aligned}
$$



Problem 13 (10 pts, justify your answer):
Near the surface of the Earth, a planar charge distribution is infinite in the $y$ and $z$ directions. It had a width of $2 a$ in the $x$ direction (which is horizontal) and is centered at $x=0$. Along the $x$ direction, the charge density varies as
$\rho(\mathbf{x})=\mathbf{C}|\mathbf{x}|$, for $|\mathbf{x}| \leq \mathbf{a}$ and $\rho(\mathbf{x})=\mathbf{0}$, for $|\mathbf{x}|>\mathbf{a}$,
where $C$ is a constant with units of coulombs $/ \mathrm{m}^{4}$.
A mass $m$ with charge +Q is attached to a massless, uncharged, insulating string and is held at equilibrium at in the charge distribution at $\mathrm{x}=\mathrm{a} / 2$ such that the string forms an angle of 30 degrees with the vertical axis at $x=0$. Determine the value of the constant $C$ in terms of the other variables in the problem.


What is E at location of change?


wands $t \pm a / 2$
by symmetry $\vec{E}$ along $x$

$$
\int E \cdot d A=\frac{Q_{\text {Incl }}}{\epsilon_{0}}
$$

$2|\vec{E}| A=\frac{2}{\epsilon_{0}} A \int_{0}^{a / 2} \rho_{a / 2}^{a}(x) d x$
$=\operatorname{tev}_{0}^{2 A} C \int_{0}^{x d x}$

$$
2|\vec{E}| A=\frac{2 A}{E_{0}} C \frac{(a / 2)^{2}}{2}
$$

Final ExamFormulas

$$
\begin{aligned}
& \begin{array}{l}
\vec{F}=q^{\vec{E}} \\
\vec{F}=\frac{k q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}^{2}
\end{array} \\
& \phi_{E}=\oint \vec{E} \cdot \overrightarrow{d A} \\
& \oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q_{\text {enclosel }}}{\epsilon_{0}} \\
& \begin{aligned}
|e| & =1.6 \times 10^{-19} \text { coulombs } \\
k & =8.99 \times 10^{9} \frac{\mathrm{~N} \mathrm{~m}^{2}}{\mathrm{c}^{2}}
\end{aligned} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{c}^{2} / \mathrm{Nm}^{2} \\
& h / 0 \sin \theta=\frac{0}{h} \cos \theta=\frac{a}{h} \\
& \tan \theta=\frac{0}{a} \\
& \text { Sphere: } A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3} \\
& \vec{E}=\int_{V_{01}} \frac{k d Q}{r^{2}} \hat{r} \\
& \text { cylinder: } A=2 \pi r L+2 \pi r^{2} \\
& V=\pi r^{2} L \\
& V=\text { work/charce } \quad x^{\prime}=\gamma(x-v t) \\
& V_{\substack{\text { PO:AT } \\
\text { chace }}}=\frac{k Q}{r} \\
& y^{\prime}=9 \\
& V=\int_{V 01} \frac{k d Q}{r} \\
& 3^{\prime}=3 \\
& u_{x}^{\prime}=\frac{U_{x}-v}{1-\frac{v}{c^{2}} U_{x}} \\
& E_{s}=-d v / d s \quad \gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
& E=\gamma m c^{2} \\
& P=m \eta=m \frac{d x}{d L}=m \gamma V
\end{aligned}
$$

$$
\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I_{\text {and }}
$$

$$
\begin{aligned}
& B_{\text {solenoid }}=\mu_{0} n i \\
& d \vec{B}=\frac{\mu_{0} i}{4 \pi} \frac{d l \times \hat{r}}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \int u^{n} d u=\frac{u^{n+1}}{n+1} \\
& \int \frac{d u}{u}=\ln |u| \\
& \int e^{u} d u=e^{u} \\
& \int \frac{x d x}{\left(x^{2}+a^{2}\right)^{1 / 2}}=\sqrt{x^{2}+a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& U_{\text {capacitor }}= \\
& Q=c \varepsilon\left(1-e^{-t / R C}\right) \\
& Q=c V \\
& Q=Q_{0} e^{-t / R c} \\
& E_{\text {Inflate }}=\sigma / \epsilon_{0} \\
& E=E_{0} / K \\
& U_{E}=\frac{\epsilon_{0}}{2} E^{2} \\
& \varepsilon=-d \Phi_{M} / d t \\
& p=i v=i^{2} R=v^{2} / R \\
& V=i R \\
& F=q \vec{V} \times \vec{B} \\
& |\vec{\mu}|=|n i A| \\
& \vec{L}=\vec{\mu} \times \vec{B} \\
& B_{\text {matter }}=X B_{\text {free }}
\end{aligned}
$$

$$
\begin{aligned}
& X_{c}=1 / \omega c \\
& X_{L}=\omega L \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& \vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{0}} \\
& \vec{S}=\frac{E_{D}^{2}}{2 \mu_{0} c}=\frac{C B_{0}^{2}}{2 \mu_{0}} \\
& P=V / C \\
& \text { Pressure }=S / C
\end{aligned}
$$

$$
\begin{aligned}
& n=c / v \\
& \frac{1}{i}+\frac{1}{0}=\frac{1}{f} \\
& m=-i / 0 \\
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
\end{aligned}
$$

quadratic eq

$$
\begin{gathered}
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\sin (x)=x-\frac{x^{3}}{3!}+\cdots \\
\cos (x)=1-\frac{x^{2}}{2!}+\cdots \\
\sin (2 x)=2 \sin (x) \cos (x) \\
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)
\end{gathered}
$$

