Exam 1 (October 7, 2014)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given.

Problem 1 (12 pts, show your work):
Consider the configuration of two charges shown in the figure along with a representation of the electric field lines of the system.
a) Indicate on the figure the signs of each of the charges.
b) What are the relative magnitudes of the two charges?

321 ines for + change on left 8 lines for - change on Right
c) Sketch on the figure the equipotential lines for this system of charges.
See sketch

Problem 2 (8 pts, show your work):
The vector that best describes the direction of the electric field at the point x on the 20 V equipotential line is
a) vector 1
b) vector 2
c) vector 3
d) vector 4
e) none of these is correct

Problem 3 (8 pts, show your work):
Charges Q and $\mathrm{q}(\mathrm{Q} \neq \mathrm{q})$, separated by a distance d , produce a potential $\mathrm{V}_{\mathrm{P}}=0$ at point P . This means that
a) no force is acting on a test charge placed at point P.
b) Q and q must have the same sign.
c) the electric field must be zero at point P.
d) the net work in bringing O to distance d from q is zero.
e) the net work needed to bring a charge from infinity to point P is zero.

Problem 4 (15 pts, show your work):
Suppose three charges are tied together (collinearly) by two massless strings. Determine the tension in the strings in terms of k, q and d .

Problem 5 (15 pts , show your work):
Figure (a) shows an infinite plane (perpendicular to the plane of the paper) with a constant positive charge per unit area, σ. In addition, as shown in the figure, two positive charges are located a distance d above the plane and separated by a distance of Rd. Figure (b) shows a similar configuration (same plane, same charges) except for one of the charges is now located a distance 2 d from the other charge on the other side of the plane along a line that is perpendicular to the plane of charge.
(a) What is the total electric flux passing through the plane in configuration (a)?

(b) What is the total electric flux passing through the plane in

$$
\phi=0=+q / \epsilon_{0}-\frac{q}{2} / \epsilon 0
$$

(a)

(b)
∞ sheet $+\sigma$
\perp To paper

(c) What is the relative magnitude of the energy stored in the two configurations?

Energy stored is the same in the two configurations by symmetries ... distance fromenchoter
chores we save distance distance from the plane

Problem 6 (21 pts, show your work):
A charge $+Q$ is located on the y axis a distance L from the origin. A bead of mass m and charge $-q$ is located at the origin and is free to slide frictionlessly along the x axis. Suppose the bead is displaced by a small amount x , where $\mathrm{x} \ll \mathrm{L}$. When released, show that the bead executes simple harmonic motion and determine the frequency of motion in terms of $\mathrm{L}, \mathrm{Q}, \mathrm{q}$ and m .

$$
\begin{aligned}
& r=\left(x^{2}+L^{2}\right)^{1 / 2} \\
& r=L\left(\left(\frac{x}{L}\right)^{2}+1\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sing is restor.m } x \text { axis } \\
& \text { to ul colons } x \text { and }
\end{aligned}
$$

$$
\begin{aligned}
(1+\alpha)^{-1} & =1-\alpha+\alpha^{2} \ldots \\
\left(1+\frac{x^{2}}{L^{2}}\right)^{-1} & =1-\frac{x^{2}}{L^{2}}+\underbrace{\text { higher ordure }} \text { Terms }
\end{aligned}
$$

 tole alone x x

$$
\stackrel{x}{\sqrt[\partial]{n}} \sqrt{r}
$$

$$
\frac{m d^{2} x}{d t^{2}}=-\frac{k Q_{q}}{r^{2}} \sin \theta
$$

$$
\begin{array}{ll}
\text { For small } x & m \frac{d^{2} x}{\sin \theta \approx \theta} \\
x \approx L \theta & d t^{2}
\end{array} \quad-\frac{12 Q g{ }^{x} / L}{x^{2}+L^{2}}=\frac{-k Q q x}{3}\left(1+x^{2} / L^{2}\right)
$$

$$
\theta \approx \frac{x}{2}
$$

let be zero Since $x / 2$ Small

$\begin{array}{ll}\text { 2) } & 18 \\ 3) & 18\end{array}$
4) $/ 15$
5) $/ 15$
6) $/ 21$
7) $/ 21$ tot $\quad / 100$

$$
\begin{aligned}
& \text { P142 University of Rochester } \\
& m \frac{d^{2} x}{d t^{2}}=-\frac{k Q_{G} x}{L^{3}} \leadsto \frac{d^{2} x}{d t^{2}}+\frac{k Q_{g} x}{M L^{3}} x=0 \\
& \text { SHM with } \omega^{2}=\frac{12 Q_{4}}{M L^{3}}
\end{aligned}
$$

cheale units

$$
\begin{aligned}
& \frac{K Q q}{M L^{3}}=\frac{K Q q}{L^{2}} \frac{1}{M L}=\frac{N}{k g M} \\
& \mathrm{~N} \text { is in mits of } \mathrm{kg} \mathrm{~m} / \mathrm{s}^{2} \\
& \lg \frac{M}{S^{2}} \frac{1}{k_{y} M} \leadsto \frac{1}{S^{2}}
\end{aligned}
$$

Good cuit of froquency
\qquad

Problem 7 (21 pts, show your work):
Consider an infinitely long cylindrically symmetric charge distribution with an axis of symmetry that is the x -axis. This charge distribution has a constant positive charge per unit length λ and a radius R. Something very strange happened to this charge distribution on the way to the exam. A line of charge of length L along the x-axis, centered at the origin, disappeared. The amount of charge per unit length that disappears along this line is λ '. Given this distribution, sketched to the right, determine the net electric field at a point P at $y=r$ above the midpoint of the missing charge line segment.

$$
\vec{E}_{p}=\text { superposition of } \vec{E}_{\text {cylinder }}
$$

 and \vec{E} of line segment of $-\lambda^{\prime}$

 use Gauss' Cant For cylinder

$$
\begin{aligned}
& \delta E \cdot d A=\frac{Q_{\text {encl }}^{\epsilon_{0}}}{} \\
& (\vec{E}) 2 \pi r d=\frac{\lambda d}{t_{0}}
\end{aligned}\left[\vec{E}=\frac{\lambda}{2 \pi r \epsilon_{0}} \hat{y} \text { at } p\right]
$$

Consider

$$
\begin{aligned}
& \overrightarrow{d E} \rightarrow d E \cos \theta=d E \frac{r}{r^{\prime}}=d E \frac{r}{\left(x^{2}+r^{2}\right)^{1 / 2}} \\
& d E=I_{2} d q
\end{aligned}
$$

$$
\begin{aligned}
& d E=\frac{l_{2} d g}{\left(x^{2}+r^{2}\right)} \\
& d E_{y}=-\frac{k \Gamma \lambda^{\prime} d x}{\left(x^{2}+r^{2}\right)^{3 / 2}}
\end{aligned}
$$

\qquad
integral rabble $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}$

$$
\begin{aligned}
& F_{\substack{\text { line } \\
\text { segnat }}}=-\left.2 k \lambda^{\prime} r \frac{x}{r^{2}\left(x^{2}+r^{2}\right)^{1 / 2}}\right|_{0} ^{1 / 2}=-\left.2 k \lambda^{\prime} \frac{x}{\left(x^{2}+r^{2}\right)^{1 / 2}}\right|_{0} ^{L / 2} \\
& E_{\substack{\operatorname{limem}_{\text {segmat }}}}=-\frac{2 t_{2}^{\prime} \lambda^{\prime} / 2}{r\left(\left(\frac{L}{2}\right)^{2}+r^{2}\right)^{1 / 2}}=-\frac{k \lambda^{\prime} L}{r\left(r^{2}+\left(\frac{L}{2}\right)^{2}\right)^{1 / 2}} \\
& \text { Let } r \rightarrow \text { bis } E_{y} \rightarrow \frac{-b \lambda^{\lambda^{2} L}}{r^{2}} v \\
& \text { So } \\
& \vec{E}_{p}=\tilde{y}\left[\frac{\lambda}{2 \pi r \epsilon_{0}}-\frac{k \lambda^{\prime} L}{r\left(r^{2}+\left(\frac{L}{2}\right)^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

ExAM I Formulas

$$
\vec{F}=q \vec{E}
$$

$$
\begin{aligned}
& |e|=1.6 \times 10^{-19} \text { coulombs } \\
& k=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{c}^{2}} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{c}^{2} / \mathrm{Nm}^{2}
\end{aligned}
$$

$$
\phi_{E}=\oint \vec{E} \cdot \overrightarrow{d A}
$$

$$
\oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q_{\text {enclosal }}}{\epsilon_{0}}
$$

Sphere: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

$$
\vec{E}=\int_{v_{01}} \frac{k d Q}{r^{2}} \hat{r}
$$

cylinder:

$$
\begin{aligned}
& A=2 \pi r L+2 \pi r^{2} \\
& V=\pi r^{2} L
\end{aligned}
$$

$V=$ work/charese

$$
\begin{aligned}
& V_{\text {POiNT }}=\frac{k Q}{r} \\
& V=\int_{V=1} \frac{k d Q}{r} \\
& E_{s}=-d V / d s
\end{aligned}
$$

