Exam 2 (November 6, 2014)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given.

Problem 1 (15 pts, no need to show work but please use the correct hand!):
In each of the following specify the direction of the force on the positive charge Q . Specifically, write down the appropriate choice from the list: there is no force on Q ; into the paper; out of the paper; to the left (in the plane of the paper); to the right (in the plane of the paper); toward the top (in the plane of the paper); toward the bottom (in the plane of the paper).
a) Point p is in center of positive current loop shown in plane of paper. Q moves into the paper.
\vec{B} due to i at p is out

$$
\vec{V} \times \vec{B}=0
$$

No force

b) Point P lies outside of the positive current loop shown in the plane of the paper. Q moves to the right.
\vec{B} at p in into papen

$$
\begin{aligned}
& p \text { in into papen } \\
& \vec{v} \times \vec{B} \text { is ap }
\end{aligned} \vec{F} \vec{F}
$$

c) Current comes out of the paper toward you. Q moves upward in
 plane of the paper.
\vec{B} at r due to i is down

$$
\stackrel{\rightharpoonup}{V} \times \vec{B}=0
$$

No force

d) Current comes out of the paper toward you. Q moves to the right.

-
Force into $\quad \overrightarrow{p a p e r}^{+Q}$

$$
\text { Paper } \times \vec{F}
$$

e) An electron moves to the right as shown while Q moves to the left.
\vec{B} at p due to e^{-}is out of papen

$\vec{v} \times \vec{B}$ is w

Problem 2 (12 pts, show your work):
If you place an electrically charged rod near a thin stream of water, the stream is deflected. Please briefly explain why this deflection occurs and in what direction it occurs (relative to the position of the rod with respect to the stream).
The \vec{E} of the rod will cause water molecules to be oriented with the opposite chases of the dipole to wand the rod.
(In this induce .l orientation the opposite change is closer to the rod chare giving a net coubenb force to wand the rod. So the thin ureter stream
 is deflected toward the rod.

Problem 3 (13 pts, show your work):
Bubba Joe belongs to the Planetary Patrol speed enforcement brigade. His job is to monitor the speed of interstellar spacecraft as they pass through the solar system. If he sees a ship that's going too fast, he levies a fine on the pilot and the ship owner. Also, having grown up in North Carolina, he levies a fine on any ship he sees that has New York plates. All in all, he's happy with his job. Bubba Joe sees a spacecraft passing the moon and measures the length of the craft to be 85 meters. From the markings, Bubba Joe identifies the ship as a Kiaford Starcruiser. When Bubba checks his handy dandy spaceship information manual, he sees that the Kiaford Starcruiser is manufactured with a length of 100 meters. From this information, Bubba Joe can determine the speed of the ship and decide whether or not to levy a speeding fine. How fast is the Kiaford Starcruiser going when it is seen by Bubba?

100 metes is the proper length 85 meths is shat Bubba Measures - Lorentz contracted

$$
\begin{aligned}
& 85=\frac{100}{\gamma}=\frac{100}{85} \approx 1.18
\end{aligned}
$$

$$
\begin{aligned}
& 1.18=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
& \frac{1}{1.18}=0.85=\sqrt{1-\left(\frac{v}{c}\right)^{2}} \\
& .85^{2}=1-\left(\frac{v}{c}\right)^{2}
\end{aligned}
$$

$$
\left(\frac{v}{c}\right)^{2}=1-.72
$$

Consider the circuit shown in the figure. What is the potential difference between the points I and II shown on the figure? Is point I or point II at the higher potential? (Please note that in this problem "I" and "II" represent Roman numerals used to indicate positions in the circuit and do not represent currents. The only current you are given in this problem is the 3A in the left segment shown in the figure.)

Need to determine currents in
Top + Bottom branch es of resistors and value of ε.
Top Branch $R_{\substack{\text { Top } \\ \text { TOT }}}=R_{1}+R_{3}=17 \Omega$
BoTTBYANCh

$$
R_{\frac{10 T}{T O T}}=R_{2}+R_{4}=22 \Omega
$$

$$
\frac{1}{R_{T O D A}}=\frac{1}{R_{T O P}^{T O T}}+\frac{1}{R_{B_{B O T}}}
$$

$$
\begin{aligned}
& \frac{1}{R_{\text {BT T }}}=\frac{1}{17}+\frac{1}{22}=\frac{22+17}{(22)(17)} \\
& R_{\text {TOT }}=\frac{(22)(17)}{39}=9.6 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& V_{I}=28.8-(1.71(12)=8.4 \\
& V_{\text {II }}=28.8-(1.3)(2)=26.2
\end{aligned}
$$

So

$$
\begin{aligned}
& \varepsilon=i R_{i 0 T} \\
& \varepsilon=(3)(9.6)=28.8 \mathrm{~V}
\end{aligned}
$$

current ia Top branch is

$$
\begin{aligned}
\Delta V=V_{\text {II }}-V_{I} & =26.2-8.4 \\
& =17.8 \mathrm{~V}
\end{aligned}
$$

Point II is at the higher potential

$$
\begin{aligned}
28.8 & =i_{\operatorname{tog}} 17 \\
i_{\text {top }} & =1.7 \mathrm{~A}
\end{aligned}
$$

1)	$/ 15$
21	112
31	13
$4)$	115
$5)$	120
$6)$	125
tot	1100

current in 130 TTOM branch

$$
3-1.7=1.3 \mathrm{~A}
$$

$$
\begin{aligned}
& \text { Problem } 5 \text { (} 20 \text { pts, show your work): } \\
& \text { EO Suppose you thrust a slab of copper of thickness b into a } \\
& \text { parallel plate capacitor as shown in the figure. It is centered } \\
& \text { exactly halfway between the plates. The parallel plates have } \\
& \text { area } \mathrm{A} \text { and are separated by a distance } \mathrm{d}(\mathrm{~d}>\mathrm{b}) \text {. } \\
& \text { a) What is the capacitance of the system after the slab } \\
& \text { is introduced? } \\
& C_{00: C}=\frac{\epsilon_{2} A}{d}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=\frac{\epsilon_{0} A}{\frac{1}{2}(d-b)}=\frac{2 \epsilon_{0} A}{d-b} \quad \frac{1}{C_{\text {Ne }}}=\frac{1}{C_{1}}+\frac{1}{c_{2}}=\frac{2(d-b)}{2 \epsilon_{0} A} \\
& C_{2}=\frac{E_{0} A}{\frac{1}{2}(d-b)}=\frac{2 t_{0} A}{d-b} \quad C_{\text {Ned }}=\frac{\epsilon_{0} A}{d-b}
\end{aligned}
$$

b) If a charge Q is maintained on the plates, what is the ratio of the stored energy before to that after the slab is inserted?

$$
\begin{array}{rlrl}
Q & =C V & E_{\text {bet }}=\frac{1}{2} \frac{Q_{\text {orig }}}{C_{\text {orig }}}=\frac{1}{2} \frac{Q^{2} d}{\epsilon_{0} A} \\
E & =\frac{1}{2} C V^{2} \\
& =\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C} & E_{N \omega}=\frac{1}{2} \frac{Q^{2}}{C_{N \omega}}=\frac{1}{2} Q^{2} \frac{\left.(\alpha-)_{\Delta}\right)}{\epsilon_{0} A}
\end{array}
$$

c) How much work is done to insert the slab?

$$
\begin{aligned}
E_{\text {New }}-E_{\text {before }} & =\frac{1}{2} Q^{2}\left[\frac{1}{c_{N r u}}-\frac{1}{c_{\text {OriG }}}\right]=\frac{1}{2} Q^{2}\left[\frac{d-b}{\epsilon_{0} A}-\frac{d}{\epsilon_{0} A}\right] \\
& =\frac{1}{2} Q^{2}\left[-\frac{b}{E_{0} A}\right]
\end{aligned}
$$

d) Is the slab "sucked in" or do you have to push it in between the plates or does it take no effort at all to insert the slab? Give some indication of why you answer this the way you do.
slab is sucked in
New conficy has low ir energy insert slab.

Problem 6 (25 pts, show your work):
Consider two semi-infinite wires
attached (tangentially) to a semicircular wire. A current i flows, as shown in the figure, along one semi-infinite wire to the semicircle and then along the other semicircular wire. What is the size of the angle θ such that the magnetic field is zero at point P at the center of curvature of the semicircle? wane Solution key- Slays

That \vec{B}
First note that \vec{B} due to semicirch in in to page at P and \vec{B} due to semi-infinite segments is out of page at P.
\vec{B} at $p=0$ when

Find \vec{B} due to line se sments
Can use BivT-savert and intsate from 0 to ∞ and rut by 2 This will work
Easier way is to recognize from the symmetry of the problem that \vec{B} duse to the two semi-infinite line segments is equivalent (at point P) to the field of an infinite wire at $r=R$
\qquad

$$
\begin{aligned}
& \text {; For Semicircle, use B⿵OT-suourt }
\end{aligned}
$$

$d l=R d \theta$

So, Answer is when
$\theta=2$ rad. equal in magnitude when

$$
\theta=2 \text { ruhhars }
$$

