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ABSTRACT

Subject headings: ? — ? — ? —
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1. Introduction

1.1. Bondi-Hoyle accretion and disk impact parameter

the orbital motion of the system modifies the BH accretion about a fixed object by

adding an acceleration which is perpendicular to the direction of the flow. A “backflow” will

then develop aimed towards a point between the seconday’s original and current positions;

the captured material is accelerated on average towards a retarded position. The time-scale

associated with the wind capture scales up with rb/vw. The distance, D, that a cell of gas

will have moved due to acceleration will thus be 1/2act
2 cosα, where α is the angle between

the flow velocity and the acceleration vector.

In an inertial reference frame co-rotating with the secondary at t0, the companion

accelerates towards the primary at rsΩ
2, and the projection relative to the incoming flow

velocity take the form

rsΩ
2

vs
√

v2s + v2w
. (1)

Given that acceleration of captured material occurs over a time scale

rb
√

v2s + v2w
, (2)

the offset scales up with

v3sr
2

b

2rs(v2s + v2w)
3/2

r̂. (3)

This implies the backflow returns at some small distance from the secondary and will then

proceed into a prograde orbit about the secondary. In summary, D falls off with the orbital

radius supporting the fact that disks start small (section 3).
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(4)

2. Model and initial set-up

We model the formation of disks in binaries numerically by solving the equations of

hydrodynamics in three-dimensions. In non-dimensional conservative form these are given

by

∂ρ

∂t
+∇ · (ρv) = 0 (5)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p− Φ (6)

where ρ, p and V are the gas density, thermal pressure and flow velocity, respectively. We

use an isothermal equation of state, thus γ =1. In (6)

Φ = − Gms√
r + ǫ

, (7)

where ǫ is a gravity softening radius which is 4 cells long.

We solve these equations using the adaptive mesh refinement (AMR) numerical code

AstroBEAR2.0 1 which uses a single step, second-order accurate, shock capturing scheme

(Cunningham et al. 2009; Carroll-Nellenback et al. 2011). While AstroBEAR2.0 is able to

1https://clover.pas.rochester.edu/trac/astrobear/wiki



– 5 –

compute several microphysical processes, such as gas self-gravity and heat conduction, we

do not consider these in the present study.

We use BlueHive2 –an IBM massively parallel processing supercomputer of the Center

for Integrated Research Computing of the University of Rochester– and Ranger 3 –a Sun

Constellation Linux Cluster which is part of the TeraGrid project– to run simulations for

an average running time of about 1 day/orbit using 64–512 processors.

2.1. Initial conditions

Our computational domain is a 2.5r3B cube. Wind boundary conditions (section 2.1.1)

are set at the −x and +y domain faces, and outflow only conditions are set in all other

faces. The primary, the center of mass of the system and the secondary are located at

(−rp,0,0), (0,0,0), and (rs,0,0), respectively. The primary simulates an AGB star with

a mass of 1.5M⊙, a spherical constant wind with speed vw =10 kms−1 and mass-loss

Ṁ =1−5M⊙ yr−1. The secondary simulates a main sequence star, or a white dwarf, with

1M⊙, in a circular orbit about the primary. We use a reference frame that co-rotates with

the secondary, thus Coriolis terms are calculated. The resolution of the simulations as well

as other relevant model parameters in shown in table 1.

2.1.1. Wind solution

Initially, we set all grid cells using the wind solution which has a constant temperature

of 1000K and a density given by

2https://www.rochester.edu/its/web/wiki/crc/index.php/ Systems#Blue Gene.2FP

3https://www.xsede.org/web/guest/tacc-ranger
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ṁp

4π(xp − x)2vw
, (8)

where xp and x are the primary’s orbital position and an arbitrary grid cell position,

respectively. We calculate the velocity field of the wind solution by solving for

the characteristics that leave the surface of the primary, xp(tr), at a retarded time

tr = t− |x|/vw, with a velocity vector pointing towards x. We assume: (i) that vw > |vs|,

where vs is the secondary’s orbital velocity. This condition is is true for the a and vw

explored (se table 1). (ii) that the distance from the primary’s surface to x is larger than

rp, which for the parameters explored restricts the distance between the secondary and the

grid’s boundaries.

As time goes from tr to t the primary covers a circular segment of radius rp which

starts at xp(tr), and has a displacement vector d = x − xp(tr). We calculate the wind

normal, n̂ so that

(vwn̂ + vp(tr))× d = 0, (9)

n̂× d =
−1

vw
vp(tr)× d. (10)

The wind velocity from the primary is then

vw = vwn̂+Vp(tr), (11)

which yields a better approximation of the retarded time

τr = t− |x|/|v|. (12)

We iterate these computations 10 times/cell and then add the velocity contribution from

the rotating frame.
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2.1.2. Wind injection

We continually set the wind solution (above) to the grid cells corresponding to the −x

and +y domain faces. This is consistent with both the location of the primary and the

direction that the stellar wind enters the grid. After each iteration in the wind solution

computations, however, we account for the acceleration caused by the secondary’s gravity

on the characteristic trajectories of vector fields which leave the primary’s surface at tr. We

allow the mass of the secondary to ramp up during one wind crossing time, 2.5rB/vw, in

order to make the transition between the initial wind solution (where no gravity effects are

considered) and the injected wind one.

2.2. Simulations

We carry out two simulations corresponding to stellar separation of 10 and 20AU.

3. Results

3.1. a

4. CONCLUSIONS

We have carried out 3D
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