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Abstract

In this thesis we present the quantum theory of a hydrogen atom interacting
strongly with a time dependent circularly polarized electromagnetic field. This
is clasically a non-integrable system. We demonstrate approximate integrability
of the time dependent Schrédinger equation near the principal resonance, and by
the proper choice of basis states we reduce the complicated nonseparable system
to an effective quantum pendulum. For the class of quantum states discussed we
also extend our theory to the case of a linearly polarized electromagnetic field
within a modified Rotating Wave Approximation. Within the theory we are able
to define and describe new so-called Trojan states, well-localized packets moving
on classical trajectories which can also be predicted within a simpler harmonic
approximation discussed in the thesis. We also predict other well localized packet
states without a classical origin, so-called anti-Trojan states.

Numerical solutions of the time-dependent and field-dependent Schrédinger
equation are used to confirm the validity of these approximations even in the range
of relatively low principal quantum numbers (n = 10—20). An adiabatic extension
of the theory allows us to work out the method for generating well localized
states from circular Rydberg states, which can be produced under contemporary
experimental conditions. We present the results of numerical simulations showing
that well localized Trojan states can be generated from the circular states by the
right adjustment of the external field frequency to the principal quantum number
of the initial state. The adiabatic extension of the theory allows us to predict the
uncertainty of the position of the packet as well as its distance from the atomic
nucleus. Therefore the size of the atom can be further controlled with the use of
a field with a time dependent frequency.

We also discuss a possible detection method by a use of very short half-cycle



laser pulses, which is a reasonable method for time and space dependent analysis

of atomic quantum states.
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Chapter 1
Introduction

We present here the analytical form of non-perturbative rotating-frame ener-
gies and states of a hydrogen atom in a circularly polarized (C.P.) field near the
principal resonance, when the frequency of the C.P. field is approximately equal
to the spacing between unperturbed hydrogenic energy levels in the limit of large
angular momentum. Our treatment is nonlinear but quantum-mechanical. For
the better understanding of this new result it is helpful to mention previous work
to which it is related.

Fundamental quantum systems in the presence of strong external perturbations
are of wide interest in physics. Fast development of new experimental techniques
which allow atomic electrons to be subjected to external forces of the order of
atomic Coulomb forces created a new need for theoretical studies of atomic systems
under strong external perturbations. These have come from experiments in laser
fields [1], in static electric and magnetic fields [2], time-dependent microwave fields
as well as strong field preparation of field-free wave packets [3]. The discovery of
Above Threshold Ionization (ATI) [4] and atomic stabilization [5] in strong time
dependent fields finally excluded one of the most powerful theoretical methods
for studies of quantum systems, time-dependent perturbation theory [6]. The
reason is that when the radiation force on the atomic electron is comparable to
the Coulomb force no clear small perturbation can be identified since both parts
of the system are equally important. The only known case when the quantum
mechanical wave function in the presence of a plane-wave radiation field can be
found for a single electron is when there is no atomic potential [7]. The lack of

analytical approaches has also created a new field in theoretical studies of those
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systems, a field of numerical experiments with use of supercomputers (8] conducted
by a direct integration of the time dependent Schrodinger equation on numerical
grids or using basis expansions.

A consistent framework for calculations in the domain of strong time dependent
perturbation is important not only from the point of view of fundamental studies
of those systems but also from the point of view of optimum control theory [9]
whose ultimate goal is to generate arbitrary states of the electron system as a
gateway for control of physical properties of matter. Therefore the knowledge
of a particular method of generation of quantum states with some interesting
properties is of great importance as a special solution of the optimum control
theory problem [9] without solving the inverse problem for the propagation of the
wave function.

Since the work of Volkov [7] various approximate analytical methods have been
developed to deal with the problem of the atom in a strong time dependent field
but approximate Coulomb-Volkov wave functions have been found only for the
continuum states [10]. The most powerful replacement for time dependent per-
turbation theory has been found in the form of the Rotating Wave Approximation
(RWA) [11] where the importance of terms is evaluated according to the classi-
fication of speed of their time dependence. Great progress in understanding of
the quantum dynamics of atoms in strong high frequency fields has been made
by realizing that it is useful to change the reference frame to one which is mov-
ing with the classical electron when there is no atom but only the laser present
[12]. This so-called Kramers-Henneberger frame allows one to construct dressed
approximate solutions of the Schrodinger equation with respect to which the time
dependent perturbation theory can be further applied. When the influence of

the atomic potential on the electron dynamics can be reduced only to the initial



condition the Strong Field Approximation (SFA) based on the extension of the
scattering matrix formalism to treat atom-laser interaction was able successfully
explain strong field ionization of atoms in the ultra-strong field regime [13].

Rydberg atoms (atoms excited to high n states [14]) provide a unique opportu-
nity for achieving the strong field non-perturbative regime with modest absolute
power of the laboratory source of the time dependent field. Although experimen-
tal [15] and theoretical work [16] has been performed on Rydberg atoms with low
angular momentum in strong linearly polarized electromagnetic fields the inter-
action of high angular momentum Rydberg states with both C.P. and linearly
polarized fields remains almost unexplored.

Great experimental progress in generation of circular Rydberg states [17] sug-
gests a new class of experiments with large angular momentum states when those
states can be subjected to strong fields and justifies the need for detailed theoret-
ical studies.

The hydrogen atom in a C.P. electromagnetic field has a unique property. Un-
like any other driven atomic system the exact solutions for its classical equations
of motion are known to be circular orbits [18]. On the other hand another class of
approximate solutions of the Schrédinger equations in the limit of large principal
quantum number has been known for the hydfogen atom [19]. These correspond
to initially localized wave packets moving while spreading along classical Kep-
lerian orbits. The association of those two facts motivated us to construct the
nonlinear albeit quantum mechanical theory presented here.

In this thesis we present our analytic quantum theory of a single-electron Ry-
dberg atom interacting with a C.P. time dependent electromagnetic field near the
principal resonance, (when the field frequency is nearly equal to unperturbed level

spacing of the atom). We also demonstrate that within its adiabatic extension,



the theory can be used for generation and control of well localized electron wave
packets in Rydberg atoms. The theory is non-perturbative and also cannot be
obtained within the time-average Kramers-Hennenberger approach. Numerical
calculations are used to show that our analytic approximations which are better
for higher orbits, are confirmed even for orbits with principal quantum number in
the range n = 10 — 20.

The thesis is organized as follows: In Chapter 2 we discuss the classical equa-
tions of the motion for the hydrogen atom in a C.P. field and the special classi-
cal analytical solutions of these equations which have motivated us to construct
quantum-mechanical wave functions within a unified approach. We also discuss
special approximate quantum mechanical solutions of the Schrédinger equation
limit in the context of approximate invariants of motion, and we review some of
the properties of related quantum systems with similar hamiltonians.

Chapter 3 is devoted to the harmonic approach to the solution of the Schrédinger
equation. We discuss generally the quantum stability of quadratic hamiltonians,
derive the appropriate harmonic hamiltonians of our system in Cartesian and
cylindrical coordinates, and discuss their energy spectra and wave functions.

Chapter 4 deals with the most important result of this work, the analytic,
nonlinear quantum theory of the hydrogen atom in a C.P. electromagnetic field
near the principal resonance. We construct the approximate solutions of the
rotating-frame Schrédinger equation analytically and compare the energy spectra
and the wave functions with the spectra and wave functions obtained from the
harmonic approximation. We also find the connection with perturbation theory
and the quadratic and linear Stark effects and extend the theory to the case when
the quantum condition of the principal resonance cannot be strictly fulfilled.

In Chapter 5 we discuss a special class of the quantum states, so-called Trojan



states, which have classical, particle-like behavior and we show the results of
numerical simulations which confirm their existence. We also discuss other states,
so called-anti Trojan states, which are highly localized but have a non-classical
origin.

Chapter 6 deals with the extension of our theory in the case when the external
field is linearly polarized within the corrected RWA. We also show a numerical
simulation of an atomic analog of Schrodinger cat states constructed within this
extension.

In Chapter 7 we discuss the implications of our theory for the quantum control
of an atomic electron. We show how the localization properties of certain wave
functions of our system can be used for the generation of well localized atomic wave
packets and how the adiabatic connection of certain hydrogenic eigenstates with
Trojan and anti-Trojan states can be used to control the relative phase between
the motion of a localized electron and the driving C.P. field. In Chaper 7 we
also show how the atom can be expanded and compressed by a C.P. field with
a chirped frequency. Finally in Chapter 8 we present the theory of detection of
localized states and calculate both theoretically and from numerical simulations
the differential cross sections for Trojan packet ionization by a short pulse. We

conclude our thesis in Chapter 9.



Chapter 2
Hydrogen Atom in
a Circularly Polarized Field
as a Nonseparable System

2.1 Classical dynamics

It is useful to describe the classical equations of motion for the hydrogen atom in
a circularly polarized field rotating with the angular frequency w in a spherical

coordinate system which can be derived from the following hamiltonian
H =Ho + Ersinbcos(¢p — wt) (2.1)

(we always assume £ > 0 for convenience), where Hy is the hamiltonian for the

classical Kepler problem [20]

1(, Pg Pi 1
_1 Po, _Ps \_1 2.2
Ho 2 (pr + r2 + r2sin? 6 r (2.2)

One can simplify the problem by performing the classical coordinate transforma-

tion
¢ +uwt (2.3)

which represents the change of the coordinate system to the one rotating with
the electric field vector of the circularly polarized electromagnetic wave. In the

rotating frame the equations of motion can be obtained from the hamiltonian

Hr=Ho + Ersinfcos d — wpy. (2.4)



|

The complexity of this system originates from the fact that the corresponding
stationary Hamilton-Jacobi equation [20] for the generating function W

LOOWN® (1 (w)\* 1 (ow\*  ow 1 (25)
2\ or r2 \ 80 r2sin20 \ 06 “Bs T 1 '

+Ersinfcos¢p =K

does not separate in any of the known coordinate systems. As a result Hr = K is
the only classical constant of motion and the classical equation of motion cannot
be solved analytically.

The classical equations of motion are

z = b (26)
"Z’t’ - —Tiz+f—§+ﬂ§%—£cos¢sin9, (2.7)
Z_Z - 1_:;, (2.8)
% = %%—Scosd)cosﬁ, (2.9)
%- = Esingsind. (2.11)

A whole class of simplified solutions of equations (2.11) exists for which

™
0=— 2.12
a (212

since those conditions make equations (2.8) and (2.9) automatically fulfilled. They
correspond to the classical situation when the electron motion takes place in the
plane of polarization of the circularly polarized field. The simplified equations of
motion for this class of solutions

dr



dp, 1 P}
dr = —1'_2 + 3 £ cos ¢, (214)
d¢ Po
= = Wt (2.15)
Py _ o
_E = €&sin (ﬁ (2.16)

can now be derived from the two-dimensional version H,p of the hamiltonian (2.4)

which is

Hap =2 (2 +78) — L 4 £reosé - w (2.17)
2D — 9 Pr r2 r Dy- -

The unique property of this system is that while nonseparable, special analyt-

ical solutions exist within this planar class described by the equations (2.16) [18].

These are the circular solutions

T = r.= const, (2.18)

pr = O, (2.19)
T

6 = z(1£1), (2.20)

Dy = w'rf, (221)

where the classical radius of the orbit r. can be found from equation (2.14) as a

solution of the cubic equation
WwritEri-1=0. (2.22)

Equation (2.22) can be solved using the well known Cardano formulas [21] and
has two physical solutions

£ 21/3¢2 1g%*(€,w)

3w? +3w2gi(8,w) 3 2132 (2:23)

+ _
rE=7F

where

g*(€,w) = (F2£° + 27w + 3V3AVFIE + 27a) (2.24)



In the limit £ — 0 they obviously reduce to the circular Kepler orbit with the

radius rg
ro = w3 (2.25)
and for finite £ we have
rt < 1o, (2.26)
r. > Tp

Classical stability analysis [18] shows that the smaller orbit is always unstable,
while the larger is stable if the field strength of a circularly polarized field does

not exceed a critical value
£ < (1/9)(8/9)"Y3w*3 (2.27)

Fig. 2.1 shows a trajectory which is a small perturbation of the circular trajectory
when the field strength is above and below the stability threshold. Also other
periodic trajectories other then circular ones has been found numerically [22].
Despite of the presence of periodic trajectories the most striking consequence
of the nonseparability of the system is its classically chaotic behavior. Depending
on the field strength £ the phase space can exhibit mixed structure, namely semi-
regular zones surrounded by stochastic layers [22, 23] as well as it can be totally
chaotic 22, 23, 24]. The transition to globally chaotic behavior can be investigated
with the heuristic Chirikov overlap criterion [24, 25, 26] which rigorously is neither
necessary or sufficient and gives only a rough and usually too severe estimate of

the global transition to chaos [26].
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-20 -15 -10 -5

Fig. 2.1. Classical trajectories of the electron in C.P. field obtained from a small
perturbation of the circular trajectory. The classical equations of motion depend
only on scaled variables r,. = rw?3, t,. = wt, £, = Ew~*/3. The upper plot shows
a weakly perturbed circular trajectory when it is stable for (£,, = 0.044) and the

lower plot when unstable (for £, = 0.228).
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2.2 Approximate separability in the low frequency
limit

The direct consequence of the lack of separability of the Hamilton-Jacobi equation

(2.5) is that the corresponding Schrédinger equation
HYU =FEJ¥ (2.28)
with the quantum-mechanical hamiltonian of the system in the rotating frame
Hzl—);-—%-i-é'x—w[,z (2.29)

is also nonseparable, where L, is the z component of the angular momentum
operator

L, = (Ipy_ypz)a (230)

p = [Pza py’p.’.]'

The hamiltonian H can be also formally obtained from the original quantum-

mechanical hamiltonian in the laboratory frame

2
Hy =% -

)=

+ &(z coswt + ysinwt) (2.31)

within the framework of quantum mechanics and with the use of the time depen-

dent unitary transformation

U(t) = etLe (2.32)

H=UH,U! (2.33)

This eliminates the time dependence of the hamiltonian H;. Therefore for two

time-dependent solutions of the Schrédinger equation, one in the laboratory frame



¥, and the other ¥ in the rotating frame

() a9
|\
Hyw,(t) = i 22R0) (2.35)
dt
one has the following relation
UL(t) = U(t)¥r(?) (2.36)

which is just a formal expression of the fact that the one wave function is the time
dependent rotation of the other.
For a frequency w which is low compared to the Kepler frequency of hydrogenic

eigenstates with a fixed principal quantum number n

1
w<<we = = (2.37)

the hamiltonian (2.29) can be simplified. We define |nlm > as hydrogenic eigen-

states by the stationary Schrédinger equation for the hydrogen atom
Hy|nlm >= ! [ 2
o|nlm >= —-mln m > (2.38)
with

2
%=%_ (2.39)

S|~

Within the Coulomb manifold of a fixed energy associated with n, the simpli-
fication of the hamiltonian (2.29) can be done using the known Pauli equality

[27]

= —g-nA. (2.40)

The A is the Runge-Lenz vector-operator given by

_ppxL=-Lxp r (2.41)

A 2 T
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Therefore within a single n manifold the energies can be found as solutions of the

stationary Schrodinger equation with the effective hamiltonian [28]
3
H,=Hy+wL, - EnEA,, (2.42)
This can be simplified to the form
9
H,=H, - ‘/w2 + Zn"’iz(A -e), (2.43)
where e is a unit vector
e = [sin~, 0, cos ], (2.44)

and A is a vector built from three of the six generators of the O(4) dynamical

symmetry group of the hydrogen atom [29]

A =[Az, Ay, L, (2.45)
and
tany = 3né (2.46)
[/

Using the commutation relations for the generators of the O(4) group

[Az, Ay] = iL,, (2.47)
(L2, Ag] = iy,
[L:, Ay] = —iA,,
one can calculate
e A,e "y = L siny + A, cosy (2.48)

e L,e " = [, cos v — Azsiny, (2.49)
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which immediately implies the eigenstates |nlm) of the hamiltonian (2.43) as [31]
[nlm) = e" "4 |nim > (2.50)

with the eigenvalues [28]

1 9
Enim = —=— +my/w? + “n2€?. _
Im o2 + w* + 4TL E (2 51)

The states (2.50) are the hydrogenic states changed by a generalized rotation
e~ They are obviously also the eigenstates of the hamiltonian Hy of the bare
hydrogen atom and can be considered as coherent states of the O(4) symmetry
group [31]. Forl = m =n—1, i.e., when the rotated hydrogenic state is a circular

state, a direct decomposition on the hydrogenic eigenstates is known [31]

p=n-—1

Inll) = Y cam()Inlple >, (2.52)

p=—-n+l

where

1 2(n — 1)]! r[l+\/1—s2
-ln+p-Dn—p-1 |1-1I—-¢2

and ¢ is the eccentricity parameter of the hydrogenic eigenstate related to its

Cnue) = [ ]25"‘1 (2.53)

average angular momentum

The round-bracket states (2.52) exhibit localization properties to some extent
(Fig. 2.2). They are localized in the plane of circular polarization of the C.P.
field and also exhibit weak angular localization while confined along an ellipse.
Physically they represent elliptical hydrogenic states, with the parameters tuned
to the frequency and the field strength of the C.P. field through formula (2.46).

Those elliptical states adiabatically follow the external C.P. field.



The method of solution of the Schrédinger equation presented here implies

that in the low frequency limit the operator of the perturbation to H,
3
W=wL, - 5"8 A

commutes approximately with the exact hamiltonian H in this regime and there-

fore is an approximate constant of motion [28], namely

aw
— =iW,H] =0 (2.54)

This result reflects the fact that the approximate eigenvalues (2.51) have well
defined quantum numbers generated by W in analogy to hydrogenic quantum
numbers [ and m generated by the angular momentum operator L and its z

component L,.

2.3 Related quantum systems

It is worth to mention a few other quantum systems with hamiltonians somehow
related to the rotating frame hamiltonian (2.29).
The simplest and best known is the hydrogen atom in a static electric field

with the hamiltonian
Hs=Ho+ &z (2.55)

obtained from the hamiltonian (2.29) of our system by formally putting w = 0.
This is relevant to the Stark effect [29].

There are two interesting theoretical facts about the Stark hamiltonian (2.55).
First, the perturbation expansion of the eigenvalues in terms of the field strength £
is divergent for arbitrary small £. Nevertheless the stationary perturbation theory

(29] applied formally gives the right answer for the eigenvalues for moderate field
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Fig. 2.2. The electron probability density in the elliptical state (2.52) for n = 20

and € = 0.7. The charge distribution is being polarized with respect to the

nucleus (z = y = 0), as it is localized around the classical elliptical orbit with the

icity €.

eccentr
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strength depending on the order of the perturbation expansion [32, 33]. Second,

besides the obvious constant of motion for the hamiltonian (2.55) which is L,
[Lz, Hs] =0, (2.56)

there is an additional constant of motion B analogical to the Runge-Lenz vector
A for the Coulomb problem given by (2.41). For the hamiltonian (2.55) one gets
[34]
£
B = A+ 5(22 + %), (2.57)
[B, Hs] = 0. (2.58)

An additional constant of motion must exist since the Stark problem separates
in parabolic coordinates [35]. The result for eigenvalues of the hamiltonian (2.55)
within first order perturbation theory coincides with the formula (2.51) in the

limit w = 0 and k£ = n, — n, and one gets [35]

1 3
Emunz = —‘7? + 571,(77.1 - nz). (259)

The numbers n; = 0,1..n — 1 and np, =0,1,n — 1 are the quantum numbers for
the hydrogenic eigenfunctions in a parabolic coordinate system [29, 35].

Another interesting related quantum system is the hydrogen atom in a mag-
netic field of strength B with the cyclotronic frequency w. = B in atomic units,
and a hamiltonian denoted by Hg. For the magnetic field parallel to the z axis
Hp can be obtained from (2.29) by putting £ = 0 and w = w,/2 and adding a

diamagnetic term quadratic in w,
wg

8

With the diamagnetic term neglected one obtains the standard Zeeman splitting

Hp = Hy — %Lz + 2o (22 4+ 42). (2.60)

of the hydrogenic energy levels [29]

1 W
57~ m—2£ (2.61)

Enlm = -
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The full problem with the diamagnetic term present is nontrivial, since L, is

the only exact constant of the motion besides Hp itself
[L., H] =0, (2.62)

and the Schrodinger equation with Hg cannot be fully separated. However the
approximate constant of motion exists in analogy to the case discussed in Sec-
tion 2.2 which allows one to calculate approximate eigenvalues of the Schrédinger
equation for moderate field strength B with well defined quantum numbers [36].
An interesting fact is that this approximate separability was first discovered ex-
perimentally by observing the regularity in measured energy spectra as a function
of the magnetic field [37].

The approximate constant of motion can be constructed from the components

of the Runge-Lenz vector A as [38, 39)
L =4A?% - 54?2 (2.63)

and the approximate eigenvalues of Hpg are [40, 41]

1 we win? ,
nam — T 5 o5 ~ e A — 2 .
Eoxm = 52 ~ Mo+ 33 [n® +9+9A(\ + 1) — 16m?] (2.64)

with A = 0...n — 1, and n and m hydrogenic quantum numbers.

The hamiltonian (2.29) of the hydrogen atom in a C.P. field in a rotating frame
obviously describes also the hydrogen atom in crossed electric and magnetic fields
in the case when the diamagnetic term in (2.60) is absent. The approximate
separability of our system for low frequencies discussed in Section 2.2 was first
discovered for the case of crossed fields [42].

There is a characteristic common feature of all the related systems discussed
in this section as well as the low frequency case of our system. For all the cases

discussed, the Coulomb manifold of quantum states associated with the principal
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quantum number n spans the quantum states of the approximate hamiltonians
and this quantum number remains a good one for the eigenvalues of the dressed
system. As we will see later, in our non-perturbative quantum theory of hydrogen
in C.P. field, the quantum number n is no longer a good quantum number even

for small strengths of the electric field £.



Chapter 3
Harmonic Approximations

3.1 General stability of rotating extremum

Within this section we discuss the classical and quantum stability of the system
described by the two dimensional hamiltonian which is the following quadratic
form in the spatial coordinates and momenta

P + P2 aw’X?+ bw?Y?
7 T )

Hogc = - {U(XPY - YPX) (31)

Thus the hamiltonian for a > 0,5 > 0 describes a rotating quadratic minimum,
and for a < 0,6 < 0, a rotating maximum, and when ab < 0 a rotating saddle-

shaped potential. The corresponding classical equations of motion

dX

22 = Pty .
7 + wY, (3.2)
% = —aw?X +wPy, (3.3)
dY

— = Py -—wX .
% = —b?Y - wPy, (3.5)

have stable oscillatory solutions when the stability matrix K

0 1 w 0

—aw? 0 0 w

K= —w 0 0 1
0 —w —bw? 0

has purely imaginary eigenvalues A

Det[K — M| = 0. (3.7)



The eigenvalues of M can be found as

Ay = Fiw,, (3.8)

Ao = tiw_,

where w,, w_ are the natural frequencies of the system and they can be found as

w+=w\/2+a+b+\/(a—b)2+8(a+b)/\/§, (3.9)

w_=w\/2+a+b—\/(a—b)2+8(a+b)/\/§. (3.10)

Fig. 3.1 shows the regions in the a — b plane for which w, and w_ are real, so A,
and A_ are purely imaginary and therefore the classical motion is stable. As can
be seen from Fig. 3.1, the rotation of the potential can cause the minimum to be
unstable and can stabilize the saddle point, but cannot stabilize the maximum.
The case of the saddle point stabilization is the most interesting one since the
stability zone is quite tiny and as we describe further, the saddle point case will
be relevant to our hamiltonian of a hydrogen atom in C.P. field.

The hamiltonian (3.1) after quantization can be transformed to the diagonal

form
Hosc = wy(atas +1/2) £ w_(ala_ +1/2), (3.11)
where the plus sign with w_ corresponds to ab > 0, and the minus sign to ab < 0.
We use the canonical transformation
ar = X +aPx+a3Y +a4Py (3.12)
a- = B X+ BoPx + Y + 4Py,
where a., a_ fulfill the standard commutation relations for a harmonic oscillator
[ay,al] =1 (3.13)

[a_,al] =1



[SV)
(8]

Fig. 3.1. The islands of stability (shaded areas) in the plane of parameters a and
b where both w; and w_ are real. In the parabolic triangle the potential has a
saddle point. Points lying on the lines a + 2b = 0 and 2b + a = 0, which intersect
the stability region, correspond to the atom in a C.P. field, and the linea+b6 = —1

to the gravitational three-body problem of Trojan asteroids.



and all the other commutators between them vanish. The coefficients a; and G;

can be found from the operator equations

lay, Hosc] = wiay (3.14)
[a_, Hosc] = dw_a_
which is the eigenvalue problem for the transposed stability matrix K
—iKTa = w.@ (3.15)
—iKTﬁ = :tw_ﬁ
where &, ﬁ are the vectors built from the coefficients of the canonical transforma-
tion (3.12).

= [a1, o, 03, ], (3.16)

[ﬁly 1327 ﬂ31 154]~

Q1

=
Il

The components of the vectors & and [f must further satisfy the conditions which
follow directly from the commutation relations (3.13) and the canonical commu-

tation relations for the canonical variables of the hamiltonian (3.1). These are
[X, Px] =Y, Py] =1, (3.17)

and all the other commutators between them vanish. Relations (3.13) can be

written in the compact form [43]
—iTy = T5! (3.18)

where the matrices T, and T, are

a; Qo Q3 Oy

T,_| B B B B

x * * *

® * * *

1 2 3 4



(3.19)
and
ay B3 —az —f
—a* —-f3* a ,Bl
T, = 1 1 1
2 oy B —ay —f
—o3 —0; o3 [
(3.20)

The hamiltonian (3.11) has square-normalizable eigenstates for real w,, w_, i.e.,

when the corresponding classical motion is also stable.

3.2 Energies and states in Cartesian coordinates

In this section we will apply the harmonic approximation in Cartesian coordinates
to the stationary Schrédinger equation with the hamiltonian (2.29) of our system
[44]

2 2 2
pz+p,+p; 1
Hy = [-—Qy— - —+&z- w(zp, — ypz)] Y = Ey. (3.21)

The harmonic hamiltonian can be obtained from the Taylor expansion up to sec-
ond order of the Coulomb potential 1/r around the circular classical trajectory
described in Section 2.1, which in the rotating frame reduces to a stationary point
with the coordinates

To=FrE, =0, z =0, (3.22)

This leads to the corresponding quadratic hamiltonian

2 2, .2 2 2 2
Pz + (py — wzg)? + p? 2z y z
Hy = E, z Yy - 3.23
@ = Bt > wof "ol T B
1
~ w[(z — 7o) (py — W) — Ypz] + T(wizo + & — F)
0
- E Bt -wn)tpl 222y 2
2 lzo]?  |zol]®  |zol?

—~ wl(z - zo)(py — wx0) — Yp],



[
(S]]

where Ej is the classical energy of the circular trajectory in the rotating frame

— — +Exy, (3.24)

which is a sum of the centrifugal energy, Coulomb energy and the electrostatic
energy in the C.P. field, which is static in the rotating frame. The term which is
linear in z vanishes since its coefficient is equal to zero as a result of the equilibrium

of classical forces (2.22). Therefore Hg can be written as

2 2,2
Hq = Ey+ Hosc + %z- + Cw; (3.25)
where Hogc is the hamiltonian of the rotating extremum (3.1) with
X = -1
Px = Dz
Y =y
Py = Dy —WIg (326)

The coefficients a, b, and c can be expressed in terms of a dimensionless parameter

q
a(q) =-2¢, blg)=4q, clg)=¢q (3.27)

where

1 1
= = 3.28

which is a ratio between the Coulomb force and the centrifugal force for the
circular trajectory. The equilibrium of forces (2.22) can be written in terms of ¢

as

E = |1 - qlg~Rw*3, (3.29)



Hamiltonian (3.25) can be now transformed to diagonal form using the general

method described in the previous section
Hg = Ep +wi(ahay +1/2) — w_(ala_ +1/2) + wo(abao +1/2),  (3.30)

with the frequencies

wy = w\/2—q+\/9q2-8q V2,
w_ = w\/2—q—\/9q2—8q V2,

Wo = wy/q. (3.31)

The frequencies are real when the parametric line [a(q), b(q)) intersects the stability

zone in the a — b plane (Fig. 3.1) which restricts the value of ¢
8/9<g<1. (3.32)

This restriction leads to limitation of the field strength £ which causes the hamil-

tonian (3.11) to have discrete spectrum within the harmonic approximation:
E < (1/9)(8/9)-1/3 43, (3.33)

which by the construction coincides with the early result of reference [18] for the
stability of the classical circular trajectories. Fig. 3.2 shows the dependence of
real and imaginary parts of w,(¢) and w_(q) for the physical ¢ values.

We have found the explicit form of the diagonalizing transformation (3.12),

and obtain these canonical lowering operators for the atom-field system [45]:

) )
a, = (—M—YX'FUP,Y—UY-FZEPY) ‘/N.*., (334)
v 1
_ = — — —P),/N_,
a (uX ZMXPX+1WXY vBy

ay = (ip; + woz)/\/wo,



N
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Fig. 3.2. Real and imaginary parts of the eigenfrequencies w, and w_ of the
hamiltonian (3.31) scaled to the frequency of the C.P. field w. The imaginary

parts vanish in a tiny stability zone for 8/9 < ¢ < 1.



with
v .
N_ = 2M—Y'(1 - 'U.), (330)
v
N, = 2-2.(1-u),
1 — 2uw — 2qv2w? \ /2
My = 2 2,2 J
u? + 2uvw + quiw
1+ 2vw + quiw? Y2
My = . .
Y (u2 — 2uvw — 2quw? ‘ (3:36)
where

u = [(9¢—4) ~3/9¢ — 8q]/4,
v = [-3¢—1/9¢% — 8q]/2qu. (3.37)

The explicit form of a; and a_ in terms of the original coordinates allows us to
find the eigenstates of Hg using the generating algebra of a harmonic oscillator

in a well known way

[my,m_,mg >=al ™" al ™ a{™|0,0,0 >, (3.38)
where the pseudo-vacuum is defined by

a+|0,0,0 >=a_|0,0,0 >= a40,0,0 >= 0, (3-39)

and the eigenvalues are given by

1 1
Brmyim_mo(E) = By +(ms + )wy — (m_ + 3)w-

+ (mo+ 3)un. (3.40)

We call the state |0,0,0 > a pseudo-vacuum because it is algebraically the
simplest, although it is not the lowest energy eigenstate of the hamiltonian Hop.

This property is implied by the negative sign near w_ in (3.11).



It is worth pointing out here that a system with the hamiltonian
H_ =-w.ala_ (3.41)

which is a part of Hg should not be confused with the hamiltonian of a particle

on the top of a quadratic potential hill which is

72 w?r?
Hrop = -F -

2 2’

(3.42)

and which does not have normalizable eigenstates. In contrast to (3.42) H_ cor-
responds to a particle with negative mass on the top of the hill which is perfectly
stable and has square-normalizable eigenfunctions and the hamiltonian in space

variables

2 2.,.2
H_ = —-7;—1 - “’—2‘” (3.43)

with a discrete spectrum not bounded from below. The reason why Hy does not
have a ground state is that as an effective harmonic hamiltonian it was constructed
by expansion around the classical trajectory with a finite energy and there should
exist quantum states with lower energy.

The set of equations (3.39) for a,, a_, and aq in a spatial representation is a

set of linear partial differential equations for the wave function

to(r) =< rl0,0,0 >, (3.44)

since
Pz = —i0; (3.45)
py = —id,. (3.46)

The wave function (3.44) can be found analytically and is the one of two eigen-

states of the greatest importance. It is given by a Gaussian wave function [44, 45]

o (:L‘, v, z) — Neiwxoye—-“2-"[Ay2+B(z—:zo)2+2iC(::-:co)y+Dzz]’ (347)
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with coefficients A, B, C and D dependent on the parameter q

Alg) = \/(1-q)(8+4g—9¢2 - 8s(q))/(3q), (3.48)
B(g) = s(q9)A(g)/(1-q),

Clg) = (2+q-2s(q))/(39),

D(g) =

where

s(q) = /(1 — q)(1 +29). (3.49)

We will discuss this solution in more detail in Chapter 5. Figs. 3.3 and 3.4 show
the real and imaginary parts of parameters A, B and C as functions of parameter
g. The imaginary parts vanish within the stability interval of ¢ to provide the

square-integrability of the wave function .

3.3 Energies and states in cylindrical coordinates

In this section we show how to obtain the harmonic approximation in cylindrical

coordinates, related to the Cartesian coordinates by

T = TCOS¢, (3.50)
y = rsing,
z = z

Since this transformation is nonlinear the wave functions obtained using the har-
monic approximation in different coordinates differ even when the harmonic hamil-
tonians are stable for the same parameter range. As we will see in Chapters 5

and 6 the wave functions obtained in the cylindrical coordinate system are more
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Fig. 3.3. Real parts of the parameters A, B, and C of the pseudo ground state
wave function (3.48) plotted as functions of the parameter q. Note that the real
part of A is much smaller than the real part of B in the stability region 8 /9<qg<1

and has a maximum for ¢ =~ 0.9562.



imB
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Fig. 3.4. Imaginary parts of the parameters A, B, and C of the pseudo ground
state wave function (3.48) plotted as functions of the parameter q. The imaginary
parts vanish in a tiny stability zone for 8/9 < ¢ < 1 which provides the wave

function to be square integrable.
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accurate than those obtained in Cartesian coordinates. That is why we discuss
this coordinate dependence in detail.

The hamiltonian H when written in cylindrical coordinates is

= Lteils sl L
H = -5+ -0, +50;+02) T
+ &Ercos¢ + iwldy. (3.51)

After the transformation of the wave function ¥(r, ¢, z) = &(r, ¢, z)// the hamil-
tonian for the function & becomes
H = —-[62 2(32 + 8] — %
e+ 2z

+ Ercos¢g+ zw6¢. (3.52)
After dropping 1/4 in (3.52), performing the first unitary transformation U; = eilo®
and then expanding the resulting hamiltonian H, = UJHU, around the stable
circular classical orbit [18] up to second order in the operators 8, and 9y, and the
variables 67 = (r —r.), ¢ and 2, we obtain the following quadratic hamiltonian

25,2 2,2 12
H = Eo—l(63+l32+6‘::’)+w'5r _ Yare?

2 2
wz 22
- 2zwr—3¢5r + 5 (353)
The classical condition of equilibrium of forces expressed by the equation
2 1 -
wre+ €= (3.54)

implies vanishing of the linear terms and leads to the requirement lp = wr?. The

frequencies wy, w, and w, are defined by the relations

£
W2 = &,
Te
w? = w2+2w§,

w = wi-u (3.55)
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and Ej is the classical energy of the electron shifted by the rotation of the coor-

dinate system

2,2
1
Eo = YT - — -+ Tcg - low. (356)
2 Te

A second unitary transformation U, = e™"<#" next transforms the hamiltonian

(3.53) into

Hoc = UJHU, = Ey+ =

(3.57)

where we defined X, = ér, Xy =r.9, n, = —i8,, 1y = (—i/r.)0s and T, = —id,.

The second unitary transformation U, proves the equivalence of the stability
in two different systems of coordinates since the hamiltonian Hgc is the identical
quadratic form in the operators X, m,, X, 74 as the hamiltonian Hg in X, Py,
Y, Py. When obtaining the pseudo ground state wave function of H one must
not forget about the unitary transformations U,, U,. Also for well confined wave
functions the factor \/r multiplying the function ¥ can be replaced by VTe and
the harmonic approximation gives the following expression for the wave function

.
Wo(r,d,z) = Neilode 5lAlred)?+B(r—re)?+2(C-1)(r—re)ree]
x e~ 307 (3.58)
with A, B, C and D given by (3.48).
The wave function (3.58) can be formally obtained from the wave function

(3.47) in Cartesian coordinates by the coordinate transformation (3.51) approxi-

mated up to second order
T—ZTgRT—Ty, (359)

y=rod+ (r — 10)0. (3.60)



However for lower angular momenta [y, functions (3.47) and (3.58) may differ sig-
nificantly enough to provide improvement in approximation when using cylindrical

coordinates.

3.4 Nonlinear corrections to harmonic approxi-
mation

We have developed another approximation for the pseudo ground state wave func-
tion ¥y which includes some terms of the order of 1/l and leads to modification
of the angular spread coefficient A as a function of the field strength [46]. In
the limit of large [y this approximation is reduced to the harmonic approximation
described in the previous section.

The approximation modifies only that part of the wave function ¥, which
depends on the variables ¢ and r, so it is enough to discuss it for the planar part

Following the harmonic approximation we search for a pseudo ground state so-
lution of the eigenvalue problem for the hamiltonian (3.61) in Gaussian form.
However this time we do not use Gaussians of the polar angle ¢ because such
functions are not single valued. Instead, we use Gaussians of trigonometric func-

tions of ¢ in the form
U(r, ¢) = Neblio-Kro)l (3.62)

where [y is an integer and K (r, @) is a periodic function of ¢.
The periodic function K (r, ¢) in (3.62) can be expanded into an infinite Fourier

series but in the spirit of our Gaussian approximation we keep only the lowest two
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terms. In this way we arrive at the following approximation for our initial wave

function

U(r,¢) = Ne'o®exp{—(lo/2r})[2r2A(1 — cos ¢)
+B(r — )% + 2iCrq(r — r.) sin¢]}
= Ne'o?®exp{—(I/2r?)[4r2Asin?(¢/2)

+B(r — r)? + 4iCr.(r — r.) sin(¢/2)
x1/1 — sin?(¢/2)]}. (3.63)

It is clear from the second form of the wave function that the role of ¢ is now
being played by 2sin(¢/2). We have not kept any terms higher than quadratic in
this variable except where such terms are needed to secure periodicity of the wave
function. That is why we could not drop the quadratic term under the square
root. This procedure can, in principle, be extended to higher orders by keeping
more powers of sin(¢/2) in the wave function.

After substituting the wave function (3.63) into the equation Hop¥ = E¥ we
perform all the differentiations, divide by the wave function, expand the resulting
equation into a power series in r — 7. and in sin(¢/2) and drop all terms higher
than quadratic. Collecting the coefficients of different powers of the variables
r —r. and sin(¢/2) we arrive at five equations for the five unknown coefficients
A,B,C,r., and [y appearing in the wave function (3.63).

The linear terms give the first two of the five equations,

! 12 24 — B+2C(ly — k)

(= -4 = .64

glate—) 2o ! (3.64)
C

where k = wr?. If it were not for the quantum corrections of the order of 1/l that

we placed on the right hand side of these equations, we would obtain the classical



values of the orbit radius and the angular momentum. Note that according to
Eq. (3.65) [y differs by C/(2A) from its classical value wr? due to the quantum
corrections appearing on the right hand side. Also the equilibrium radius r. is

slightly shifted. The quadratic terms lead to the remaining three equations,

34~ B+2C(lg— k)

A>-C*4+1—¢= 50, , (3.66)
32—02—40—3+2q=3A10‘B, (3.67)
(A+B)C+24A = —g, (3.68)

lo

with ¢ = r./IZ. In the classical limit, when l; — oo, the right hand sides vanish and
our equations have analytic solutions which coincide with (3.49) obtained from the
previously discussed harmonic approximation in cylindrical coordinates as well as
those obtained in an early WKB approach in reference [18]. The wave function
(3.63) coincides with the two dimensional part of the wave function (3.58) in this
limit after expanding sin ¢ and cos¢ up to second order in the polar coordinate
@. As we will show in Chapter 5 this method gives a very good approximation to

the exact pseudo ground state solution.
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Chapter 4
Energies and States
within Nonlinear Theory

4.1 Overview

In this chapter we present the most important result of our work, the analytic,
nonlinear quantum theory of the hydrogen atom in C.P. field near the principal
resonance. By the proper rearragement of the bare hydrogenic basis states we are
able to achieve an approximate separability of the Schrodinger equation. This is
based on our new view of the bare hydrogenic quantum numbers. We have found
that in contrast to perturbative approaches it is not the principal quantum num-
ber n which labels the manifolds of strongly interacting states but new quantum
numbers k£ and s which represent the deviation of a given state from circularity.
In contrast to non-perturbative harmonic approaches described in Chapter 3
this theory provides an explicit decomposition of dressed states in term of hy-
drogenic eigenstates, has well defined zero field limit, and predicts new states
which cannot be described within harmonic theory. By the approximate block-
diagonalization of the hamiltonian of our system we are able to look on a hydrogen
atom in C.P. field as a system of non-interacting quantum pendula. This provides
analytic expressions for both the energies and the wave functions of the rotating
frame hamiltonian. The main advantage of this analytic theory is that among
thousands of eigenstates it allows us to identify two classes of quantum states
well localized in all spatial dimensions. Those states are of special importance

since their adiabatic connection to circular states, well described within our the-
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ory, implies new experimental methods of creating and controlling atoms with
highly localized electrons. These special states have been denoted Trojan states

for reasons that will be made clear later in Chapter 5.

4.2 Energies and states of the quantum pendu-
lum

In this section we discuss the stationary solutions of the Schrédinger equation
with the hamiltonian

2

p= —Wan+lgcos¢ (4.1)

It describes a quantized pendulum with mass m in a gravity field g and length
[. An understanding of this simple quantum system is essential for our nonlin-
ear quantum theory of hydrogen in the C.P. field and it is worth discussing its

properties in detail. Defining £ = (¢ — 7)/2, the Schrédinger equation
Hpy = Evy (4.2)

can be transformed to the well known Mathieu equation [47]

5

28 + [@ — 2pcos 2€]y = 0, (4.3)
where

a=8mriE, p=—4mgl® (4.4)

The periodic solutions of equation (4.3) are the Mathieu functions e; with peri-

odicity 7 and 2w. The periodic boundary conditions for the wave function

V(o + 27m) = ¥(9) (4.5)
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allow only 27 periodic solutions for the wave functions. The invariance of the
pendulum hamiltonian (4.1) under the transformation ¢ — —¢ implies that the
eigenfunctions 1; are either odd or even. Fig. 4.1 shows the scaled pendular ener-
gies a; corresponding to even eigenfunctions and Fig. 4.2 a few lowest eigenstates
of the hamiltonian (4.1).

There are two physically different kinds of solutions of the Schrodinger equation
(4.2) depending on the relation of the energy of a given eigenstate with respect to
the classical energy of unstable equilibrium of the up-side-down position a = 2p
which defines the separatrix in the pendular phase-space [20].

The states with energies above the pendulum separatrix, o’ (p) > 2p, are closer

to the eigenstates of a rigid rotor with the hamiltonian

1 0?2

R= =5 54 (4.6)

with comparatively flat dispersion a(p). (Fig. 4.1). They correspond to the clas-
sical situation when the pendulum is so excited that it almost steadily rotates
around its pivot-point. The states with energies below the separatrix, o’ (p) < 2p
are of a different kind, corresponding to oscillatory-like motions of the pendu-
lum around the stable equilibrium point. Then the pendular hamiltonian can be

approximated by the hamiltonian of a harmonic oscillator

_ 1 62 w;[l2(¢ - 71')2
He=—5 gt 3 (4.7)

with the frequency wgy = \/g—/l As a result of localization of those states around
¢ = 7 pendulum equilibrium position their energies exhibit almost linear growth
as functions of the parameter p. This transition can be best seen by following the
behavior of a selected Mathieu function as a function of both the parameter p and

the normal angular variable ¢, as shown in Fig. 4.3.
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Fig. 4.1. Levels of scaled energy —a (corresponding to symmetric Mathieu func-
tions) as functions of the parameter p. The value —a = 2p corresponds to Trojan
states. States with scaled energy in the vicinity of the line ~a = —2p are anti-
Trojan states. Note that anti-Trojan states do not belong to a single energy line

but to different lines close to the spectrum folding around a = 2p.



arbitrary units
o

0
Fig. 4.2. A few of the lowest eigefunctions of the quantum pendulum (w-periodic

Mathieu functions) labeled in order of the exitation for p = 60. For this choice of

the parameter p they resemble the eigenfunctions of the harmonic oscillator.
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Fig. 4.3. Probability density of one of the higher excited states states of the quan-
tum pendulum (6-th, even) as a function of both the angle ¢ and the parameter
p- Note the change from the plane-wave-like behaviour for low p characteristic
of the rigid rotor to oscillator-like behaviour for high p. The change of behavour
occures near separatrix a = 2p near p = 60, where the wave function strongly

peaks around ¢ = 7.
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4.3 High n expansion and resonant approxima-
tion

There are two main disadvantages of the harmonic approaches discussed in the
previous chapter. First, the wave functions obtained within the harmonic ap-
proximation do not have a strict mathematical limit with a clear physical inter-
pretation when the field strength £ goes to zero, since they are no longer well
localized and the harmonic approximation is not well justified in this limit. Sec-
ond, those approaches are not giving an explicit decomposition of the dressed
eigenstates on the hydrogenic eigenstates, which is of special importance for lower
field strengths when the spectrum of the rotating frame hamiltonian of our system
should smoothly approach the hydrogenic levels in the rotating frame. In this sec-
tion we discuss the essential ingredients which allow us to construct the nonlinear
effective hamiltonian for a hydrogen atom in a C.P. field. This hamiltonian will
generate energies and eigenstates free of those limitations.

We start from the Schrédinger equation with the hamiltonian (2.29)

2 1 .
(%— -+ £z — sz> Up=FE(E)Vg (4.8)

where j labels the exact (discrete) eigenvalues of (2.29). We assume that an
eigenfunction ¥ can be expanded as
‘IIE(Ta 03 ¢) = Z cnlm(E)Rﬂ‘ll(r)}/lm(ga ¢)7 (49)
nim
where Ry (r) is the radial part of the hydrogenic eigenfunction and Y, is a spher-
ical harmonic. In this basis the stationary Schrédinger equation with the hamil-

tonian (2.29) takes the form

E Y o™y = [E(E) - By + muwld,,,, (4.10)

nim
n'l'm’



where E, = —1/2n?, and the hydrogenic dipole matrix elements
Tnm =<n,l,miz|n’,l,m' > (4.11)

are known analytically [48] and the only nonvanishing ones are

Li(l+m+2)(l+m+1)__,
"1 - = n'l+1 -
<n,,mjzln,l+1,m+1> QJ @3 @A+ T, (4.12)
Li(l-m+2)(l-m+1) __
] 1 -1 - __ n'l+1 .
<n,mlzln,l+1,m > 2\ A +3)@ T 1) R0, (4.13)
1Li{l-m(l-m-1)__,_
'l 1> = —= m =1 )
<nlmlzln,l-1,m+ 2\ @+ D@i-1) ™ (4.14)
LI(+m)l+m—-1)__,_
iy -1 = = n'l-1 )
<n,l,mlzln,l -1,m > N\ @@ =1 (4.15)
where R™! is the radial part of the elements given for n’ # n by (48]
. (o o]
RY = /0 RuyR y_1rdr = (4.16)
(=07 i+ DY 41— 1)! (dnn!)H (n — pf)nin 202 g
4@ -1\ (n = =1)I(n' =) (n + n/)n+n’
4nn’
— — , — ——————
{F[-n., —n], 2L, (n —n’)2]
n—n'\2 ann/
- iy — 27- ,, y T N9 M
(n+n’) Fl=n e 2 (n— n’)z]}

where F is the hypergeometric function and n, =n—1{—1,n’. =n'—|[. Forn=n’
g r

one gets [48]
= —gn\/nz — 12 (4.17)

The matrix equation (4.10) can be solved only numerically and the crucial

point for further processing is to reduce the hamiltonian matrix

<nlLmlHR, U,m >=E"'™ + E, — mw (4.18)
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to an approximate, simplified form.

We have found the clue to this simplification. We divide the {|nim >} basis
into the following manifolds {|n,n ~1,n -1>}, {In,n-1,n—-2>},... {|n,n —
k,n — k — s >},.... The first manifold represents circular states, the second all
states with angular momentum L, one atomic unit lower, etc. Note that all of
these manifolds are infinitely large. The simplification can be performed because
for £k < n and s « n (states with angular momentum quantum numbers close
to circular) matrix elements between states within a particular manifold labeled
by £ > 0 and s > 0 are much larger than those between states which belong to
two different manifolds. This can be checked directly by inspecting the analytical
form of the matrix elements of the coordinate z between two different hydrogenic
eigenfunctions (4.15), but also can be estimated from the large-n approximate

expression for the radial matrix elements (4.16). This is [49, 50]
2

i [(1 + Alé) Jor1(se) — (1 — Al;lz-) Js—l(ss)]

= (4.19)

IRz =

where Al =1'"—-1=+1,s=n-n' >0, J; is the Bessel function of the s-th order

12

Let us consider all the matrix elements (4.19) between the state |n,n~k,n—k—s >

and

from a fixed manifold k, s and fixed n and other states which are not zero. Those
will be |n',n' — k',n' — k' — s’ > for which n # n’

n—k = n -k +1, (4.21)

n—k-s = n -k -5=+1 (4.22)

For ¥ < n,k<nalsos=n-n'=k—k'F1 < n and the argument of the

Bessel functions J,_; and Jg,, is also small se <« 1, also [ = n. One can now



expand those functions [21] and get

n? se\stl 1 se\s-l 1
EEBIiI)(E) (s+1ﬂ—%1;1)65) (s—lﬂ” (4.23)

For se < 1 expression (4.23) is a fast decreasing function of s with a maximum

|Rot’ (5)] =

at s =1, i.e,, [R%(1)| 2 n?, and this establishes an approximate block diagonal
form in k,k'. For n = n’ this can be seen directly from the exact expression
(4.17) since [ = n. The approximate diagonal form in s, s’ follows directly from
the consideration above, since those matrix elements which could be large, i.e., for
k = k' are restricted by the second of the transition rules (4.22) to n—s = n/—s’'+1.

As the result, in our first principal approximation, the interaction between dif-
ferent manifolds {k, s} can be neglected. Additionally, we concentrate on rotating-
frame eigenfunctions that are well localized in angular momentum space, namely
those requiring only a limited number of significant terms in the expansion (4.9),
centered around some particular value of n denoted ng. Because of the assump-
tion of the localization of the wave function in angular momentum space we will
put all matrix elements between states within a particular manifold equal. The
conditions £ < n and s < n allow us to take the value z%'™ = n2/2 = ry/2 for
all matrix elements assumed to be nonzero. Under these assumptions equation
(4.10) is block-diagonal with blocks labeled by k& and s. The assumption about
the localization in n allows us to expand the hydrogenic energy around ng up to

second order, namely

1 3 6n?
=~ +wln - S, 4.24
E 53 + won 372 ( )

where w, = 1/n} is the Kepler frequency corresponding to the quantum number
ng, and én = n — ng.
Now we impose our second principal assumption. By assuming w, = w, the

principal resonance condition, the Schrodinger equation (4.10) for the particular



48

block then takes the simple form

£ : . )
Ero(a-;’l—lks + aiz-i-lks) = [E] (S) - Eno + (Tlo — k- s)w

36n2. .
+ 5?10#3 (4.25)

With Gngs = Con—kn—k—s- This simplification follows directly from the fact that
dipole matrix elements between states within a single manifold {|n,n —k,n — k —
s >} are zero except between two consecutive states |n,n — k,n — k — s > and
In—1,n—-1-kn—1—-k—s>.

For n and [ much larger then 1 we can assume that there is no boundary
restriction for the variables n and dn. Under this assumption equation (4.25)
becomes the Schrédinger equation for a quantum pendulum, but with a negative

mass —1/3. In real space it becomes

318 +Ergcosg|f = [FI(E)-E
213 O¢? 0 - no
+ (no—k — s)ulf, (4.26)
where
f(®) =3 gl e (4.27)
on
Therefore it can be written in the standard Mathieu form [compare (4.3) with
¢ =2+
o= —(8r3/3)[E — Eqy + (no — k — s)w] (4.28)
and

4(effmw?) 4 €
p= 5% =35 (4.29)

Thus the dimensionless parameter p in our theory has a physical interpretation.

[t is proportional to the ratio between the radius of the orbit of a free electron in
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the presence of a circularly polarized light field (Volkov problem) and the Bohr

radius (Coulomb problem). Note that equation (4.26) implies that the operator
31 ,
Hppp = —Er—iLz + Ergcos g (4.30)
0

is an approximate constant of motion for quantum states from within given &, s
manifold in the analogy to approximate constants of motion discussed in Chapter

2.

4.4 Energies and states

The energies of our systems can be now expressed in terms of the eigenvalues o’

of the Mathieu equation as

: 1 3 .
El(€) = o2 (no—1-k—s)w— gr—gaJ(P) (4.31)

For the discrete set of eigenvalues a, of the Mathieu equations (4.3) two analytic

asymptotic expressions are known [47]. For p < u one gets

2
C!u(p) ~ ;1.2 + 2(#5—_1) (432)

and in the opposite case for 1 < p the asymptotic expression is

a,(p) =~ — (e7 +81)2 1] +2(2pu +1)\/p — 2p. (4.33)

The corresponding eigenfunctions of equation (4.26) are obviously also Mathieu
functions and because of periodic boundary conditions, only those with periodicity
7 are permitted. This implies that in the case of formula (4.32) only every second
eigenvalue can be permitted, namely p = 27,7 = 0, 1... since the eigenfunctions
of (4.3) corresponding to odd p have period 27 in the variable £ and lead to

nonphysical wave functions. In case of formula (4.33), 1 can be either even or



odd since the solutions with periodicity = become approximately degenerate [47]
with those with periodicity 27, and one corresponding to a physical solution can
always be found.

The coefficients a7, , from equation (4.25) can be found as

aly, = / eg;(£)e™4d¢, (4.34)

where ey;(£) is the j-th Mathieu function of period m. Expressions (4.32) and
(4.33) allow us to obtain two asymptotic expressions for the field-dependent energy

levels of the hamiltonian. For low values of the electric field we obtain

E(€) = EL(€)

372 &%
= ~(ng—k — 8)w — =L — 4.
Eno — (ng — k - s)w 577 T IE -1 (4.35)
For larger field strengths we use (4.33) and get
El(€) = Eny—(no—k-sw
3(252+2j+1) . 1. /3
= - o ,/— . 4.

The spectrum is labeled by three quantum numbers s, k, and j. The first two are
associated with the angular momentum quantum numbers of hydrogen and the
third with excitations of the quantum pendulum.

The corresponding eigenfunctions directly from (4.9) can be written

\ijs(ra 07 ¢) = }: anksRn,n—k(T)Yn—-k,n—lc—s(ey (b) (437)

When the summation in (4.37) is restricted to n around some particular value nq,
as we assume for the expansion of hydrogenic energy (4.24), the radial functions
Ry n—k and Y, n—k—s can be replaced by those for n = ny. This is a result of the

fact that for fixed s and & they have the same spatial character or, in other words,



they are slowly varying functions of n. Under this assumption we get from (4.37)

‘I’jks(ra 07 ¢) = Nno—k,no—k—sei(no_k_S)¢ero,no—k(r)

X Pno—k,no—k—s (9) Z a‘n.ksei&nd’v (4.38)
én

where we wrote explicitly spherical harmonics Y}, as products of Legendre poly-
nomials Py,, exponentials e?*® and normalization factors Nim. Note that now
because of relation (4.34) the sum over én can be reduced back to the Mathieu

function and therefore the wave function has a nice analytical form

lIijs(r’ 07 ¢) = Nno—k,no—k—sei(no_k_3)¢Rno,no—k(T)

X Pno—k,no—k—s(e)er((¢ - 71’)/2) (439)

The pendular-like character of the wave functions (4.39) immediately implies two
physically different kinds of solutions analogical to those of the quantum pendu-
lum. The states with energies below the pendulum separatrix, a’(p) > 2p (note
the negative mass of the pendulum which causes levels to be inverted), are closer
to the circular states of bare hydrogen and they are delocalized angularly with a
weak angular periodic modulation (Fig. 4.4 (d)-(f)). As a result of nonlocaliza-
tion, the eigenvalues corresponding to those states exhibit weak dependence on
the field strength Fig. 4.1. They correspond to near-circular classical orbits with
angular velocities larger or smaller than the frequency of the external field [22].
The states with energies above the separatrix, o?(p) < 2p, correspond to
oscillatory-like motions around the stable classical orbit [18, 51] and as we discuss
in the next section in the limit of large ng can be well represented by our harmonic
approximations discussed in Chapter 2. As a result of localization their energy
exhibits an almost linear growth as a function of the external field (Fig. 4.1).

Special attention should be given to two special kinds of states, those with their
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Fig. 4.4. Examples of the eigenfunctions (4.37) for the scaled field &,, = 0.016 and
ng = 20 corresponding to even-order Mathieu functions and the circular-states
manifold (k = 1,s = 0): (a) jks=010, pure Trojan packet-state, (b) jks=210,
oscillatory-like, from above the separatrix, (c) jks=410, near the separatrix, (d)

Jks=610, (e) jks=810, (f) jks=10 10, rotational-like, below the separatrix.



energies around the separatrix, i. e., o/(p) = 2p, and those with o’(p) ~ —~2p
(Fig. 4.4). These are so-called Trojan and anti-Trojan states [44, 45, 46, 52] which
we will discuss in detail in Chapter 5.

Equations (4.31), (4.34) and (4.37) contain one of the most important results of
our work presented in this thesis, namely the analytical form of non-perturbative,
rotating-frame energies and states of the hydrogen atom in a circularly polarized
field near the principal resonance treated within the nonlinear theory. This result
supplies the limited list of results for atoms in various strong external fields when

the approximate spectra can be found analytically.

4.5 Analytic, asymptotic and numerical tests of
pendular versus harmonic approximation

It is interesting to compare the spectra obtained within the harmonic approxi-
mation (3.40) with the result of the nonlinear approach (4.31). The connection
comes directly from the approximate formula (4.36). For the field strengths which
guarantee classical stability the parameter ¢ satisfies the condition (3.32), namely
(8/9) <g<1,s0qg=1and we have w,; ~ w and wg ~ w. For £ large enough
for fixed k and s, the energy levels given by expression (4.36) are equally spaced

with the spacing

o = /(3E/r0). (4.40)

'The behavior of o as a function of the parameter ¢ (shown in Fig. 4.5) allows us
to associate this spacing with the frequency w_ from the harmonic approximation.
Note additionally that Ey & E,, +&rg— (ng — 1)w, since the radius of the classical
orbit r. is only very little different than the radius of the corresponding Kepler

orbit 7o = ng. The small difference between those two radii is given by the



relation 7. = rog~'/3 which follows directly from (3.28). This connection between
the basis expansion method and the harmonic approximation allows us to tell
which Rydberg manifolds contribute most in creating the eigenfunctions of the
harmonic hamiltonian (3.53). The quantum number mq from the formula (3.40)
associated with the excitation perpendicular to the plane of the motion of the
packet obviously corresponds to the quantum number s in the expression (4.36).
The quantum number m, in (3.40) corresponds to & in (4.36) and finally the
Mathieu function index j corresponds to the index m_ in (3.40). Therefore the
eigenstate of hamiltonian (3.53) with the eigenvalue Ey,, ;_ m, is built mainly
from the hydrogenic eigenfunctions which belong to the {jn,n — 1 —m,,n—1 —
m4—myg >} manifold with 7 in the vicinity of ng, which is defined by the resonance
condition w = 1/n3.

Also the simplest possible eigenfunction (4.37) (j = 0, kK = 1, s = 0) can be
compared directly with the pseudo ground state wave function obtained within
the harmonic approximation in cylindrical coordinates (3.58). In this case the
functions Rpg ng—1, Png—1,n0—1 and eq have Gaussian-like shapes in their coordinates
[47, 19]. For ng large enough and for appropriate field strengths the function (4.39)

can be written as

2

Uirs(r,0,0) = Neino—1dp—5(r=ro)? o—5r36? (4.41)

—fwr2s2
x e FErad’

where the expression for the coefficient 3 is given by

B =1/Es/3. (4.42)

Here &, is the electric field scaled to the Coulomb field at the distance rq from

the nucleus, &, = Ew!/3.
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Fig. 4.5. Eigenfrequencies of the harmonic hamiltonian (3.11) as functions of
the parameter ¢ and the spacing o obtained from formula (4.38). Note that
generally w, ~ w, = w and 0 = w_, so the energy spectra obtained from the basis
expansion method with the assumption about noniteracting manifolds and from
the harmonic approximation approximately coincide. For lower field strengths

(larger g) the agreement is better.



The Gaussian approximation of the zero order Mathieu function eq originates
directly from the fact that the cos2¢ in equation (4.3) can be replaced by its
expansion up to second order in £ when the wave function is compact enough to
permit a small-§ approximation. This occurs whenever p is large enough com-
pared to u. As we pointed out in Section 4.1 the Mathieu equation in this case
becomes the Schrédinger equation of a harmonic oscillator. The quantum me-
chanical condition for this replacement can be found from the requirement that
if one wants the harmonic approximation to be valid for the j-th eigenstate in
equation (4.26) the amplitude of the cosine term in (4.26) must be larger than
the energy of the j-th level obtained from the harmonic approximation. This
self-consistent requirement means that the cosine potential must be deep enough
to bind j states in the harmonic portion of the potential well. This requirement

gives the constraint for the scaled electric field, which is

G+1)7°

ng

>3 (4.43)

This implies that for very small field strengths the harmonic approximation holds
for the particular eigenfunctions (4.37) with j = 0, and for j not far from the lowest
the energy levels are almost equally spaced as predicted by formula (4.36). Note
that wave function (4.41) approximately satisfies periodic boundary conditions
with respect to the variable ¢ only when it is well localized around ¢ = 0. On
the other hand the function (4.39) is free from this restriction since the Mathieu
function eq has period 7. For large enough r. and appropriate field strengths the
z-dependent parts of the wave functions (3.58) and (4.41) can also be compared
directly with the expression using the approximate relation z = r.8. Note that
when this approximation holds (for wave functions well localized around the plane

of orbital motion) the circular coordinate r is approximately the same as the
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cylindrical r and a comparison is possible.

For lower field strengths when g is very close to 1 (Fig. 4.6) we have B = 1,
C=1, D=1 and also A ~ 3, so those two wave functions do not differ too
much from each other, which confirms the applicability of our approximation of
noninteracting manifolds. The deviation for higher field strengths is a result both
of the assumption of the lack of the interaction between manifolds as well as
the fact that the basis of hydrogenic bound states is not a complete basis. The
orthogonal space of the continuum states also exists but the interaction with the
continuum has been totally neglected. The interaction with the continuum states
will lead to a small amount of ionization, and this contributes to a non-zero width
of the energy levels.

Note that in the limit [ — co the harmonic approximation becomes exact
while the model of noninteracting manifolds does not, and for very large [, the
harmonic approximation should be used as a test of the former model rather than
vice versa. For lower values of [y and lower field strengths, when the harmonic
theory predicts weak radial confinement of the electron wave function, we can
expect that the noninteracting manifolds model works better. In the limit £ — 0
it recovers the quadratic nonlinearity of the Coulomb spectrum and the exact
hydrogenic eigenfunctions.

Finally we can resort to purely numerical calculations as a strict test of our
analytic results for finite (non-asymptotic) values of principal quantum number
and angular momentum. We have solved the stationary Schrédinger equation
numerically using only aligned states (states with [ = m) in the expansion of
the wave function (4.9), which is approximately equivalent to considering a two
dimensional hydrogen atom [53]. This corresponds to taking into account all

(numerically truncated) states from {|n,n — 1,n — 1 >},... {|n,n - k,n — k >}



1.0
. D
C
0.5|
B
B
A
%0 ' | | 1

Fig. 4.6. Parameters of the pseudo ground state wave function (3.58) obtained
from the harmonic approximations as functions of the parameters ¢ and 8 given
by (4.41) from the noninteracting manifolds model. For larger ¢ we have B ~
C~ D =1 and also A = f, and therefore the harmonic wave function agrees
approximately with the one obtained from the basis expansion for lower field
strengths (however fields strong enough to permit the harmonic approximation in

the Mathieu equation as given by the condition (4.43).
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manifolds, with all interactions between those states governed by the values of the
exact matrix elements between them.

Figs. 4.7 and 4.8 show the rotating frame energy spectra as functions of the
scaled electric field for the frequency w = 1/n3, for ng = 10 and ny = 20. One can
barely identify two doublets in Fig. 4.7 but two triplets can be picked out in Fig.
4.8 consisting of energy lines almost linearly proportional to the field strength.
This is the imprint of the harmonic spectrum. Note that from condition (4.43)
one gets the maximum number of levels contributing to a harmonic-like structure
within a single bunch as ny,e; = ng(Es/3)/2. For the maximum value of the
scaled field £, = 0.05 and ng = 20 we get nn.; = 2.58, so one should expect
about three harmonic energy lines as one sees in Fig. 4.8. For &, = 0.1 and
ng = 10 we have nn,., = 1.83, so one expects to see up to two lines as can be
identified in Fig. 4.7. If the identification of the harmonic energies is not totally
obvious, reference to Figs. 4.9 and 4.10 which show the corresponding energy lines
obtained from the eigenvalues of Mathieu equation (4.3), is helpful. One can see
very satisfactory agreement between analytical and numerical results for ny = 20

and still satisfactory for ny = 10.

4.6 Relation to Stark effect

We want to point out here that the stationary Schrédinger equation for our system
(4.8) can be considered as a Stark problem with the paramagnetic hamiltonian

2

P 1
o e o — e 2z .
Hp 5 - wL (4.44)

since

H=Hp+&z (4.45)
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Fig. 4.7. Energy spectrum as a function of scaled electric field in the vicinity of
the ng = 10 circular state for w = 1/n3. The marker points belong to the Trojan
lines. One can see two doublets on the diagram separated by approximately
w = 0.001. The large marker point corresponds to the Gaussian-like Trojan

packet for &, = 0.016.
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Fig. 4.8. Energy spectrum as a function of scaled electric field in the vicinity
of the ng = 20 circular state for w = 1/n. The marker points belong to the
Trojan lines. One can see two tripets on the diagram separated by approximately
w = 0.000125. The large marker point corresponds to the Gaussian-like Trojan

packet for £, = 0.016.
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Fig. 4.9. Doublets obtained from the expression (4.31) within nonlinear theory
for w = 1/10%. The large point corresponds to the Gaussian-like Trojan packet

for £, = 0.016.
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Fig. 4.10. Triplets obtained from the expression (4.31) within nonlinear theory
for w = 1/20%. The large point corresponds to the Gaussian-like Trojan packet

for £ = 0.016.
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For the bare hydrogenic eigenstates which are obviously also the eigenstates
of Hp for weak field strength one can use the stationary perturbation calculus
treating £z as a perturbation to Hp. The energies of the hamiltonian are however
different then the energies of the hydrogen and the standard perturbation calculus
for degenerate n manifold used for normal Stark effect [35] no longer can be used.
The results from the Section 4.1 show that near the principal resonance w = 1 /n3
one should use the new quantum numbers s,k as a guidance for perturbation
theory [54]. Within a single {s,k} manifold no states are strictly degenerated.

The first order correction to the energy vanishes [55]
bE'=€<nn—kn—k-slzin,n—kn—-k—s>=0 (4.46)

The second order correction is given by [55]

_ _ _ 1 I __ _ 2
6E2=82Z l<n,n-kn-k slxln,? k,n'—k—s>| (4.47)
n#n’ Egks - En'ks
with
B, =-—1 _ (n—k — s)w. (4.48)
nks 2”2

The infinite sum over n in (4.47) reduces only to two components with n' =
n £ 1 from the construction of the {s, k} manifolds and the angular momentum

transition rules, so

SE? = £% x (4.49)
|<nn—-kn—k-slzln+l,n—k+1l,n—k—-s+1>
{ E2+Ik3_Eg+lks
|<n,n—k,n—k—s|z|n+1,n—k—l,n—k—s—1>|2}
Eg—llcs—Eg’—lks

+

Using the expansion of the bare energies (4.24) up to second order in n — ng and

the approximate resonant value r3/2 for the dipole matrix elements the expression



(4.47) reduces to

1 &%}

2 e S —
OB = 3 (46n2 — 1)

(4.50)

Note that the second order perturbation energy with expanded zero-order part of
the energy F3_ i,

2
E*(E) = —ﬁ —(no— k — 8)w — g%— +6E? (4.51)
0 0

for j = |dn| coincides exactly with the low field limit (4.35) obtained within our
nonlinear theory which we obtained using known [47] low-p expression (4.32) for
characteristic value of the Mathieu equation a(p). Thus the weak field result can
be interpreted as second order Stark effect for the paramagnetic Kepler problem
with the cyclotronic frequency w/2.

The nonperturbative strong-field limit (4.36) can be interpreted as an approx-
imately linear Stark effect since for low quantum number j in the expression the
term linear in £ is dominant. Note that this transition from quadratic to approx-
imately linear Stark effect is exactly inverse of that for the normal Stark effect
for a hydrogen since the lowest order effect is linear [35]. This can be understood
from the fact that in our case the essential states which are mixed by the electric
field are not degenerated, but on the larger energy scale they look approximately
degenerated since the centrifugal term in the hamiltonian H cancels the linear
contribution to the spacing between the energy levels. However even for larger
fields this lack of degeneracy remains important enough to induce an additional
term in (4.36) which is proportional to v/£ and is a peculiarity of our case. Also
one may notice that because of small deviation from circularity & and s of the
manifolds we consider, the dipole matrix elements which are responsible for state
mixing in case of the normal Stark effect (those between states with the same

principal n), within our approximation of noninteracting manifolds can be totally
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neglected which also confirms that the nature of our dressed states is very different

then the normal Stark states.

4.7 Corrections by small detuning and quantum
defect

Within this section we will discuss a modification of our nonlinear theory in the
case where the resonant condition w = 1/nj is not strictly satisfied [30]. This may
obviously happen since ng in an integer. We will incorporate also the case when
the hydrogen atom is replaced by another atom with an active single electron, for
example by sodium. This is important since atoms other then hydrogen are more
feasible from the experimental point of view.

When the single electron potential of the atom differs from the Coulombic 1 /T
potential the energies of the atom no longer are described by the Rydberg series.
When the potential remains spherical the angular momentum quantum numbers
[ and m still remain a good quantum numbers however the energies become [

dependent. The energies may be written as

1

Enl = —2—_—(77, — 6[)2.

(4.52)

The [ dependent parameter §; which represents the deviation of the spectrum
from being hydrogenic is called the quantum defect [14] and can be found within
the quantum defect theory [56] from the phase shift of a radial part of single
electron wave function. It may also be found directly from an experiment from the
deviation of the transitions from the Rydberg series. For large angular momenta
this correction is small, however as we will show, the generation of certain dressed
eigenstates of our system is very sensitive to the resonance condition and even

small corrections to this condition may be significant. Since the quantum numbers



n, | and m are preserved even when the hydrogenic { degeneracy is removed we
still can divide the eigenstates into the manifolds {s, ¥} described in Section 4.2.
Since for the large angular momenta the radial wave functions do not deviate much
from hydrogenic as they do not penetrate the core region where the deviation of
the potential from 1/r dependence is the largest [14], we can assume the same
conditions for smallness and magnitudes of the matrix elements. We also assume
0;=0 as a constant analogically to previous assumption about all nonnegligible
matrix elements. Since § is small we can now expand E, = E,; around fixed ng

with respect to én — ¢

A2
+we(6n - 6) — g“—”rgﬂ (4.53)

En,=

Iz
where we keep the definition w. = 1/nj. Note that because we allow any w and
also because of the presence of the quantum defect & the term linear in én no
longer vanishes. To be as close as possible to the resonant case we define ng

through the generalized detuning

A=w.—w+ 3% (4.54)
To

as near resonant, such that A is the smallest possible for all ng.
In the pure hydrogenic case for § = 0, A represents just normal detuning
between the frequency of the external field and the closest near-resonant Kepler

frequency. The definition of A implies

11 1 1 1 1 3
T e ) O Vil QUL . o) (PO 4.55
|A|<2{n8 (no+1)3} 2{(n0—1)3 no} 2rd (4.55)
The presence of the term linear in én modifies the equation (4.26) for the gener-

ating function f to

31 82 5} . 342
—_——— — A — = 7 — —_—
577547 ZABqS +Ergcos @) f (EP(E,A) - Eyy + 372 Wb

+ (no —k —s)uwlf (4.56)
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which upon the substitution f = e=*¢ f, , = A?r2 /3 reduces to the previous form

——— —_—— = J — ——
5 2 5g TErocosd = AMf = [EI(E,A) = Eny+ 37~ b

+ (ng—k—s)w]f = E¥(E,A)f (4.57)

Equation (4.57) however now can be considered as the Schrédinger equation for the
one dimensional solid [57], rather then a quantum pendulum since the function f
is no longer periodic since the function f must be 27-periodic and « is noninteger.
Nonperiodic solutions of the equation (4.57) are fractional Mathieu functions [47]
and they are also Bloch functions for the one dimensional solid with harmonic
periodic potential [57]. The correction to the energies can be found using known
results for the one dimensional solid or the Josephson junction [21]. Using the

notation of Josephson junction we define the critical energy

3

EC = 8—7’g (408)
and
EJ = 57'0 (459)
In a weak-binding limit E; <« E¢ [65] we obtain
.. . A2r2
E(E,A) = EI(£,0) + jA — 5 0 (4.60)
In the tight-binding limit £; < E¢ we obtain sinusoidal bands
Ei(E,A) = E'(E,0) (4.61)
1 9 1/2 EJ 3/2+3/4 94s+5
— (-1 % = -
2( 1) r Foggg 71 exp(~(8E,/Ec)]

X [cos(2mk) — 1]

In the tight-binding limit we get the approximation for the pseudo ground state

wave function f as

F(#) =" go(¢ ~ 2rn)eim=, (4.62)
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where
go(@) = e Pw/Ar3e? (4.63)

is the ground state of the harmonic oscillator obtained by the expansion of the
cos¢ up to second order in ¢ (Section 4.2). The generating function f is the
periodic part of the tight-binding Bloch function (Wannier function) with the

Bloch vector —&

(@) =" go(¢ — 2mn)el®-2mm)s (4.64)

The pseudo ground state wave function in the approximation leading to (4.42) is

now

Wji(r,0,8) = Nelmo—Uoe=s(r—ro)o3rie?

x 3 e~B%r3(¢-2mv)? Si(g—2mv)x (4.65)
174

For the larger field strength gq is well localized so only the term with v = 0 gives a
significant contribution so the full wave function (4.65) is well localized and does
not differ much from the resonant case. Note that for larger field strength the
“bands” in the parameters A, E7(€, A) are almost equally spaced since the band
width is exponentially decaying. This is consistent with the result from the har-
monic approximations in Chapter 3 where no discrete parameter appears. This
can be understood since in the resonant case A = 0 discussed in the previous sec-
tion the condition (4.43) for good quality of the harmonic approximation implies
automatically the tight-binding condition E; > F¢ which translated in the scaled

field is just

ESC >> % (4.66)



This condition also implies that for strong fields &, > 0.01 the energies and
states are well described within the tight-binding approximation since we expect

our nonlinear theory to be valid for the lowest states for ny > 10.



Chapter 5
Importance of Localized States
and Numerical Confirmations

5.1 Trojan wavepackets

'The common prediction of both the harmonic approximations from Chapter 3 and
the nonlinear theory from Chapter 4 is that the algebraically simplest eigenfunc-
tion of the rotating frame hamiltonian (2.29) is a Gaussian, well-localized wave
function as given by the formulas (3.47), (3.58) and (4.39). Within the harmonic
approximation this state has the highest energy for m, = mg = 0, i.e., the one
with m_ = 0. Within the nonlinear theory this is the highest energy eigenstate
spanned by the manifold s = 1,k = 0 of circular states. In the laboratory frame
it represents a well localized wave packet moving around the classical circular or-
bit without changing the shape. The harmonic approximation within nonlinear
Mathieu theory (4.39) through the unitary transformation to the laboratory frame

(2.33) gives the time dependent solution

Toio(r, 0, p;t) = Ne tEorteilno=1)(¢—wt)o—g(r—ro)? o~ 5r36?

x e BEri(e—wt)? , (5.1)

The expectation values of the coordinates and momenta

<Tr> = T (5.2)
<pr> = 0
<P> =~ wt

2
c

<L,>

Q

wr
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are approximately equal to its corresponding classical values. Therefore the packet
is obeying Newtonian dynamics and from this aspect is the cardinal example of
the quantum versus classical correspondence. The essential point is that this state
does not change its semi-classical character with time since the packet remains
shape-invariant.

The search for this kind of quantum state for hydrogen without any external
field has a long history. Schrédinger and Lorentz sought to construct such a state
from wave mechanics without success [58]. The reason why it is not possible
to construct a quantum state for the hydrogen atom which follows a classical
trajectory for the arbitrary long time is the nonlinearity of the Coulomb spectrum,
which is also the source of the negative and fractional electron mass in the equation
(4.26). The approximate time evolution of the state Wo;4(r, 8, ¢;0) in the hydrogen
atom was found in early searches for wave packets moving on the circular orbits

[19]

2

s _; I w2 w2
e zHot\pom(,r’a’ b; 0) = Ne 1En0tez(no I)¢e 3 (r—ro) e 5 To0

X exp [M}’ (5.3)

3 _ Giwt
20¢ o

with oy = 1/rg\/Bw. This is a Gaussian wave packet moving around a classical
circular orbit and spreading angularly three times faster than a free wave function
of a one dimensional particle with the same mass. This acceleration of spreading
compared to the free particle case can be explained as a direct consequence of
the fractional mass in (4.26). Formula (5.3) also describes the situation when the
hydrogen atom was originally in the pseudo ground state but the external field has
been abruptly turned off, and shows the importance of the external field for the
suppression of spreading. The result (5.3) is valid only for t < T, =~ Tn!/2/38/2,

where T' = 27 /w. After T. the packet speads so much that it covers the 27 angle.



For larger times it undergoes fractional revivals [59] - it splits into smaller packets
which are similar to the one at ¢ = 0 and approximately recovers completely after
a full revival time Tr =~ Tno/3. This time evolution does not correspond to any
single classical trajectory and from this aspect is purely quantum mechanical.
Another interesting aspect of the states (3.47), (3.58), (4.39) is that they are
the direct quantum analogs of so-called Trojan asteroids, two cluster of asteroids
orbiting the sun near the stable Lagrange points denoted Ly and Ls of the sun-
Jupiter system [44]. That is why they have been called Trojan wavepackets.
Lagrange points L, ..., Ls are the points of equilibrium in the restricted three-
body problem of celestial mechanics at which the centrifugal forces are exactly
balanced by the gravitational attraction of the two orbiting bodies (Fig. 5.1).
These points have fixed positions in the coordinate frame co-rotating with the two
bodies around their center of mass. Around the each Lagrange point the motion
of the particle can be derived from the hamiltonian of the rotating extremum (3.1)
discussed in Section 3.1. The three collinear points lying on the line connecting
the centers of the two bodies are unstable. The two equilateral points, lying on
the vertices of two equilateral triangles based on the line segment connecting the
centers of the bodies are stable if the mass ratio u = my/(m; + my) satisfies the
condition u(1 — p) < 1/27. The coefficients a and b in the celestial case depend

only on the coeefficient p

a(p) = =1 - 3u(1 - p)/2 - 1/2, (54)

blp) = +y/1-3u(l - p)/2-1/2, (5.5)

so they that are constrained to the line a+b = —1 and they belong to the stability

island in Fig. (3.1) if one of the masses is very small compared to the other mass,

p<1/2-,/23/108 = 0.03852, or, u > 1/2 + /23/108 = 0.96148. The mass



Fig. 5.1. Lagrange equilibrium points in celestial mechanics. The collinear points
L,, L, and L3 are always unstable. The equilateral points L, and L5 are stable
for (1 — p) < 1/27 and they are the points of accumulation of Trojan asteroids

in the sun-Jupiter system.



~J
Ut

of Jupiter, slightly less than one-thousandth of the solar mass, meets the first
criterion and the two clusters of Trojan asteroids undergo stable oscillations in
the rotating frame with the frequencies w, = 2m/147.4yr and w_ = 27/11.9yr.
Jupiter in this case is the source of a time dependent gravitational field in full
analogy to the external C.P. field while the Sun as the source of an attractive
gravitational force corresponds to the heavy hydrogenic nucleus.

We have confirmed the presence of Trojan wave packets in two dimensional
grid simulations by solving the time dependent Schrédinger equation in the labo-
ratory frame using so-called split-operator method [44]. The initial wave function
was chosen in the form (3.47) for w = 1/60% and ¢ = 0.9562 corresponding to
best confinement in the y direction (maximum of the coefficient A(q)) and we
obtained modest agreement with the harmonic approximation. In Fig. 5.2 we
show snapshots of packet probability contour lines at various values of time.

A great improvement in shape stability (Fig. 5.3) is achieved using the cor-
rected harmonic approximation in cylindrical coordinates with the wave function
(3.63) used for the initial condition with the parameters A, B and C obtained from
the numerical solution of the nonlinear system of equations (3.65), (3.68). In order
to make our observations quantitative, we monitored the total probability P(t)
inside a circle with radius approximately twice the radius of the corresponding

classical orbit. It is given by the function
P(t) = [ [ @ (r.¢:)2(r, & t)rdrdg, (5.6)

for the area of integration is restricted to this circle, with ®(r, ¢; t) our numerical
solution. Fig. 5.4 shows a negligible rate of ionization (probability of ionization
& 0.0007 per cycle, averaged over the first 10 cycles). We have also made test of

the approximation (3.63) by calculating the correlation function C(t) between the
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Fig. 5.2. Time evolution of the wave packet in the laboratory frame prepared at
t = 0 according to (3.47) for w = 1/603 and ¢ = 0.9562, i.e., for the maximum
of A(q). Snapshots of the contour lines of the probability distribution are taken
three times per cycle for the cycles 1, 2, 3, 5, 7, and 10. Each square covers the

space region of the size 11250 x 11250 atomic units.
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approximate and numerical solutions defined as

c) =| [ [ (r.6:)%(r, 6:t)rdrdg), (5.7)

where U(r, ¢;t) is the approximate solution given by (3.63). Values of C near to
1, as in Fig. 5.5, indicate excellent agreement between theoretically predicted and
numerically generated functions for angular momentum of the packet as low as
lo = 60.

We have also compared various approximations for even lower angular mo-
menta. Figs. 5.6 and 5.7 show contour plots of two dimensional versions of
Trojan wavepacket intensity (electron probability density) obtained from various
approximations for the scaled field £, = 0.016 for ng = 10 and ny = 20. Plots
(a) show the result of the harmonic approximation discussed in Section 3.2. In
plots (b) we show Trojan packets obtained from the modified Gaussian approx-
imation given by formula (3.63). Results of the Mathieu function approach and
the aligned states expansion (Section 4.2) are shown in plots (c) and (d). One can
see that the difference increases when the value of ng decreases, but qualitatively
all approaches give the same result. One expects the wave function obtained from
the plain harmonic approximation to be the least accurate, since it significantly

violates periodic boundary conditions for this value of the field.

5.2 Anti-Trojan wavepackets

The classical dynamics predicts the existence of two circular trajectories (2.21)
with the motion shifted in phase by m which are equivalent to one stable and
one unstable fixed point in the rotating frame. Since the stable point is capable
to support Trojan packet discussed in the previous section, the natural question

raises if there are special quantum states associated with the unstable point. No
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Fig. 5.3. Time evolution of the wave packet in the laboratory frame prepared at

= 0 according to (3.63) for l; = 60, w = 1.09/603 and &,. = 0.050, i.e., for the
maximum of A obtained numerically from the modified Gaussian approximation.
Snapshots of the contour lines of the probability distribution are taken three times

per cycle for the cycles 1, 2, 3, 5, 7, and 10. Each square covers the space region

of the size 11250 x 11250 atomic units.
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Fig. 5.4. Values of P(t), the total probability inside the circle with radius ap-

proximately twice the radius of the classical orbit for the time evolution plotted

in Fig. 5.3.
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value of the scalar product between the theoretical and numerical solutions for

the time evolution plotted in Fig. 5.4.
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Fig. 5.6. Trojan wave packet for £, = 0.016 and w = 1/10% obtained from (a)
harmonic approximation from formula (3.58), (b) modified Gaussian approxima-
tion given by (3.63), (c) Mathieu functions approach from expression (4.37), and
(d) the numerical solution in the aligned states basis (4.9). Functions (c) and (d)
correspond to the two large points on the energy diagrams in Figs. 4.7 and 4.9.

The black dot in the center indicates the position of the nucleus (z = y = 0).
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Fig. 5.7. Trojan wave packet for &, = 0.016 and w = 1/20°® obtained from (a)
harmonic approximation from formula (3.58), (b) modified Gaussian approxima-
tion given by (3.63), (c) Mathieu functions approach from expression (4.37), and
(d) the numerical solution in the aligned states basis (4.9). Functions (c) and (d)
correspond to the two large points on the energy diagrams in Figs. 4.8 and 4.10.

The black dot in the center indicates the position of the nucleus (z=y=0).
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harmonic approximation can give the answer to this question, however the non-
linear theory presented in Chapter 4 does. The point is that for the quantum
pendulum the localization of the wave function occurs not only around =0
but also ¢ = w. The first point of state localization is the Trojan stable point at
r = [no?, ¢ = 0], and localization there corresponds to the highest excited state of
the effective pendular hamiltonian defined by the Schrodinger equation (4.26) for

the generating function f

31 62

EFF = 5%%5 + Ergcos @, (5.8)

(recall the negative effective mass).

The second localization point is of a different character. It is predicted by
our pendulum theory to be located opposite the first point, at r = [me?, ¢ = 7).
State localization around the second point cannot be explained on the basis of
classical mechanics. It is an example of probability density enhancement of certain
eigenstates around clasically unstable orbits called the quantum scar effect, known
from the properties of quantum systems that are classically chaotic [60]. A local
maximum in the density of levels is an imprint of localization of the eigenstate
with the corresponding energy, around the trajectory in question [60]. As Fig.
4.1 shows, there is a fold or kink around the energy line k = —r& (e = 2p).
This corresponds to the separatrix in pendulum phase space and shows a larger
density of levels in the vicinity of this energy. This partly heuristic arguments can
also be checked directly from the properties of the symmetric Mathieu function
e2;(€) [47]. The localization property can be seen from the approximate form of

the Mathieu function [47] given by

C 1
(E) &~ o; +2q)2 F .
€2; (6) ( ; 2p cos 26)% COS[( ] Q) 1(71 f)]a (5 9)
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where C' is a constant and Ei(7,&) is the incomplete elliptic integral of the first
kind. It exhibits combined amplitude and frequency modulation [47] and the
amplitude factor peaks around £ = 0 in the strongest way when a; = 2p. In
the laboratory the corresponding wave function describes a non-spreading wave
packet moving around the nucleus on the circle rg = ny? located 180° in phase
advance with respect to the corresponding Trojan wave packet. We called those
states “anti-Trojan” states because the theory indicates that they should be found
exactly opposite each Trojan on its orbit. Note that anti-Trojan wave packets do
not belong to a single energy line but to different lines close to the spectrum
folding around « = 2p.

The interval of field strengths for which the Trojan (stable-point-related)
packet exists has been expressed in terms of the scaled field &, < 2/9%/3 a 0.1068
A sufficient condition can also be obtained for anti-Trojan packets using the known
properties of the Mathieu functions and the asymptotic, Gaussian form of the ra-
dial part of the circular states wave functions. The Fourier coefficients a7 in (4.37)
of the Mathieu function of the order j with the energy near the separatrix which
generates anti-Trojan state peak as descrete function of n for n ~ j and n ~ — 7.
Circular states [ng +j,mo+j5~1,n04+j—1>and [ng—j,ng—j—1,ng—j~1>
are in this case the main components of the function (4.37). Also for sufficiently

large ng the radial part of the circular state can be approximated by a Gaussian

[19]
Rpymo-1(r) m Ne~(r—nd)*/2m3 (5.10)

so centered around n§ and with a full width Ar = 2v/2n3/2. Moreover from (5.10)
for j <« ng two circular states |ng + j,ng +j — 1,ng +j — 1 > and |ng — 7, m0 —

J—1,n9 —j — 1 > are centered approximately Ary = 4ngj apart. Therefore the
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wave function (4.37) will exhibit also clear radial localization when
Aro/Ar < 1 (5.11)

i. e. two of the leading components overlap significantly. Furthermore the flat
dispersion a(p) below the separatrix (Fig. 4.1) allows to extrapolate af(0) =
o’ (p) = 2p for the a’(p) near separatrix. From the result (4.31) this extrapolation

leads to the relation

352
which together with (5.11) leads the sufficient condition for anti-Trojan localiza-

tion
Ese <€ = 3/4710 (513)

In contrast to the condition for the existence of Trojan packets, the anti-Trojan
critical field & is not independent of ng. In particular the critical field vanishes
when ny — oo, which is consistent with the quantum-mechanical nature of anti-
Trojan wave packets. In Chapter 7 we present the results of numerical simulations

which confirm the existence of anti-Trojan states.



86

Chapter 6
The Case of Linear Polarization

6.1 Corrected RWA approximation

In this chapter we discuss the extension of our theory of hydrogen in a C.P. field
to the case of the linear polarization [61]. We start from the time dependent
Schrédinger equation with the hamiltonian of the hydrogen atom in a linearly

polarized electromagnetic field

v?
Hip = 5 +E(t)-r, (6.1)

= |

with the oscillating electric field E(t) = £€[e™** + e™t]. The Rotating Wave
Approximation [11] can be done by decomposing the electric field vector E(t) into

two circularly polarized fields rotating with opposite helicity, namely
E(t) =E.(¢) + E-(?), (6.2)
where the corresponding components are

E.(t) = E&[Zcoswt+ Jsinwt], (6.3)

E_(t) = E&[Zcoswt— §sinwi].

and neglecting one of the components, which reduces the problem the hydrogen
atom in C.P. field. One should point out however that the negligence of one of
the components of E(t) is strictly equivalent to RWA only for the states which are
well described for C.P. field within our nonlinear theory from Chapter 4, i.e., those

which populate only the basis states from a single {k, s} manifold with n in the



neighborhood of ny, like Trojan packets. If one includes other states, for example,
“counter-rotating” states with m = —[, fast oscillatory terms will remain even in
C.P. field which can be neglected within RWA.

Therefore for each circularly polarized component of the external field, consid-
ered separately, there are solutions of the type described in Chapter 4. Obviously
the relative rotational frequency between the other component of the field and
the motion of the packet is equal to twice the frequency of the circular motion of
the field. One can expect that this “counterrotating” term does not have a large
influence on the dynamics and this is correct. In order to estimate this influence
carefully it is useful to change the reference frame to one moving with the free
electron in the presence of one of the two components of the field, for instance,
E_(t). This s just the Kramers-Henneberger (KH) frame [12] associated with this
component of the field. The corresponding (KH) hamiltonian can be obtained by

the superposition of unitary transformations

UA — eid&-(t)/dt-r’ (64)

Ug = e &9 (6.5)

2
— trpt V"1 (e s
Hgg, = UBUAHUAU =75 |F+&_(t)I+E+(t) [r+a_(t)] (6.6)
2 1 . 6'2 5
= T2 Traq) T g sty

where @_(t) is the trajectory of the free electron in the field £_(t), namely &_ (t) =
—~[€ /w?][£ coswt — Fsinwt], which obeys the classical equation of motion for the

free electron in C.P. field




|

!
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In the region of the space for which |@_(¢)[/|7] < 1 one can use the standard
multipole expansion of the time dependent K-H potential [63]. When restricted

to the plane z = 0 and written in circular coordinates this takes the form

1 o A at (I -—m)!
Fram ~ &2 .m0~ dmrrmy (638)
x[P™(0)]? cos[m(¢ + wt)],
where

2Ll +m+1)/2] 1

m — 9om 1/2 -
P"(0) =2™n M —m¥2)/2] cos[2(l + m)7] (6.9)
and r = [f], ap = |@-(t)| = |€|/w?. Therefore in zero order approximation valid

for ap/r < 1 one can ignore higher multipoles and take 1/[7+ &_(t)| = 1/r. The

resulting hamiltonian becomes

Higg,e = ——g—? - l—;]_ +E (t) -7+ g;cos(2wt), (6.10)
which is up to the last term equal to the hamiltonian of the hydrogen atom in
a circularly polarized electromagnetic field. Therefore the time dependent so-
lution kg4 () of the Schrédinger equation with the hamiltonian Hg ., differs
from those in C.P. field only by a time dependent phase. The hamiltonian (6.10)
is written in the K-H frame associated with the component E_(t) of the field.

Therefore one should not to forget to transform the wave function W g, (¢) to the

laboratory frame using U, and Ug
Vo (7, 8) = USUL Ui+ (7' ) (6.11)
The full wave function in the laboratory and frame is given by

\If+ (7:" t) — eiF1 (t)e—iaowr cos{wt+¢) \IJKPH- [7-.' -G (t), t],

(6.12)
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with time dependent phase Fj.
For the Trojan wave packet given within the modified harmonic approximation

(3.63) in the K-H frame by

Urnui(Fit) = NeFleo?exp{—(lo/2r2)
x[2r2A(1 — cos(¢ — wt)) + B(r — r.)?

+2iCre(r — rc) sin(¢ — wt)]}, (6.13)

the influence of the counter rotating term is now clear. In contrast to the case
when the external field is circularly polarized, the center of the wave packet moves
around a trajectory which is the sum of a circular motion with the large radius rq
and a circular motion with the small radius g having the opposite helicity, which

can be written parametrically
z(t) = (ro+ ap)coswt,
y(t) = (ro— ap)sinwt. (6.14)
These expressions define an ellipse with the major axis rq + oy and minor axis
To — Q.
Obviously we can make a comparable analysis by exchanging E_ (t) and E.(t),
and can obtain a second approximate solution
\Il_(f“, t) — eiF(t)eiaowrcos(wt—¢)\IIKH_[,,-:_ &+(t),t],
(6.15)

with @, (t) = —[€/w?|[Z coswt + §sin wt] and where Ug 5 _(7, ) is the correspond-

ing solution of obtained from (3.63), which is

Uen-(F,t) = NeF1le®?exp{—(ly/2r2)
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x[2r2A(1 — cos(¢ + wt)) + B(r — r.)?
—2iCre(r — r¢) sin(¢ + wt)]}.

(6.16)

The second solution is just a mirror reflection of the first one with respect to
the plane of the electric field polarization. It originates from the fact, that the
hamiltonian (6.1) we started with is invariant under the transformation y — —y.

In order to test the quality of our approximate analytic solution we have solved
the time dependent Schrédinger equation numerically with the function ¥ (7,0)
taken for the initial condition. The parameters of the packet have been taken
the same as in the former case of circular polarization discussed in Section 4.1.
Fig. 6.1 shows the time evolution of the probability density calculated from this
wave function. The shape stability of the packet is a little worse than in the case
with circular polarization. This can be explained by the influence of the time
dependent terms in the expansion (6.8). Compared to the case for C.P. field, the
stable behavior of the predicted solution is disturbed mainly by the higher terms
of the multipole expansion of the time dependent Coulomb potential. Those
small terms lead to a small deviation of the trajectory of the wave packet from
the predicted ellipse, and shape oscillation of the packet. However for the field
we took, ag/rg = 0.05026 is small and therefore appropriate as a parameter of
expansion.

In addition we calculated the time dependence of the total probability P inside
the circle with radius equal to 2rg as well as the correlation function C as defined
in Section 4.2. As shown in Fig. 6.2, faster decay of P indicates a little higher
rate of ionization than found for C.P. case. This increase can also be explained

by the influence of the small time dependent terms which are not included in
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Fig. 6.1. Contour plot of the probability density for the single packet in the
lab-stationary frame prepared at ¢ = 0 according to the modified RWA formula
(6.13) and lp = 60, w = 1.09/60% and &, = 0.050. Snapshots are plotted every
1/3 of the optical cycle for cycles number 1, 2, 3, 5, 7 and 10. Each square covers

the space region of the size 11250 x 11250 atomic units.
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Fig. 6.2. Values of P(t), the total probability inside the circle with radius ap-
proximately twice the radius of the classical orbit for the time evolution plotted

in Fig. 6.1.
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Fig. 6.3. Values of the correlation function C(t), defined in (5.7) between the the-

oretical solution (6.13) and the numerical solution for the time evolution plotted

in Fig. 6.1.
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the derivation of our analytic solution. The lifetime of such a solution should
be compared with the period of the orbit and in these terms the decay is still

negligible.

6.2 Three-dimensional Schrédinger’s cat states

The direct consequence of the linearity of the Schrédinger equation is that a

coherent superposition of those states, with for example equal amplitudes

@CAT(I', t) = [\II— (7?1 t)\'/"'i‘p-F(F’ t)] (617)

will also be an approximate solution of the Schrédinger equation with the hamil-
tonian (6.1). Both the functions ¥_(7,t), ¥, (7, t), if constructed for Trojan pack-
ets, have semiclassical character. However their coherent superposition (6.17) is
a purely quantum mechanical state. The component functions are “macroscopi-
cally” distinguishable in the sense that, when considered alone, they represent well
confined clouds of electron probability moving along classical orbits and therefore
the superposition (6.17) can be considered as a time dependent three dimensional
atomic analog of the Schrédinger cat state [62]. This coherent superposition will
strongly interfere twice during one optical cycle, when the well localized compo-
nents of the state “collide” and pass through each other. Fig. 6.4 shows numerical

simulation of this kind of this state for w = 1/20%, and &,. = 0.016.



BTN K
Rk

=27 =2725

' (AT

Fig. 6.4. Typical one cycle steady field (£, = 0.016) evolution of two-packet state
(6.17) (w = 1/20%) obtained in numerical simulation. Strong interference pattern

appears twice a period when the two packet components pass through each other.
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Chapter 7
Application to Quantum
Control

7.1 Adiabatic connection to zero-field states

The direct prediction of nonlinear theory presented in Chapter 4 is that for a fixed
excitation j. The eigenvalues E7 of the rotating frame of the hamiltonian (2.29)
depend continuously on the field strength £. In particular in the limit £ = 0 the
corresponding eigenstates correspond to hydrogenic eigenfunctions. This follows
directly from the expression for the energy spectrum (4.31) and the properties of
the Mathieu equation. The discrete eigenvalues a’(p) and Mathieu functions [47]
depend continuously on the parameter p for fixed excitation j (Fig. 4.1). There-
fore the eigenstates with the same quantum numbers s and k are adiabatically
connected to hydrogenic eigenstates with a fixed deviation from circularity.

Most interesting from the point of view of applications is the adiabatic con-
nection of Trojan and anti-Trojan wave packets since the atom in those states has
a well localized Rydberg electron moving around a circular orbit with controllable
uncertainty of the position and the momentum. In the case when direct resonance
is possible, i.e., A = 0 and with no quantum defect § = 0 (Section 4.6), it follows
directly from formula (4.31) that Trojan wave packets are adiabatically connected
to circular Rydberg states with the principal quantum number 7, for which the

Kepler frequency equals the frequency of the C.P. field:
1
W= n—g. (71)

For delta 0 < |A] < 3/2r% the weak binding (4.60) predicts Trojan wave packets



to be adiabatically connected to the circular states with the closest resonant ng as
defined in Section 4.6. For A ~ 3/2rZ the Trojan level has a weakly avoided cross-
ing with the first deexited level, which is adiabatically connected to the nearest
circular state with n = ng — 1. In tight binding approximation (4.61) this crossing
becomes strongly avoided and two neighboring Trojan packets with near resonant
or resonant ng and no+1 are also adiabatically connected in the frequency domain.

In contrast to Trojan wave functions, anti-Trojan wave functions converge in
the zero field limit (p — 0) to hydrogenic eigenstates for which the resonant
condition w = 1/n3 is not satisfied exactly even when A = 0. This is caused
by the nonlinearity of the Coulomb spectrum, represented within our pendulum
model by the kinetic energy term in the hamiltonian (5.8) which originates from

the second order expansion of the hydrogenic energy around the resonant n.

7.2 Three-dimensional localization of Rydberg
electron

By the adiabatic theorem [55] the adiabatic connection between a Gaussian-like
Trojan packet and its parent circular state implies that the approximate time

dependent solution of the Schrédinger equation

p? 1 - _ av
[7 -z + z&(t) szJ U(t) = H()¥Y(t) =1 pr (7.2)
with the initial condition
¥(0) =< r|ng,ng — 1,19, =1 > (7.3)

can be found as

‘I’(t) = \I/mo[l‘,g(t)]eic(t) (74)
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where Woior, £(t)] is a Gaussian Trojan wave packet (4.65) and G(t) a time de-
pendent phase. The approximation works fine [55] if the transition to the first

deexcited Trojan state is small

):40)

5 [¥o10 > [/(Eowo — Eno)® < 1 (7.5)

lai10] =< Uyy0|

The quantity |a;;0| estimates the population transferred to the neighboring state
during a quasi adiabatic process [55]. In the low field limit and generalized detun-
ing A = 0 this may be estimated in terms of dimensionless variables, using the

formula (7.5)

d&s. 97
Ir < Fg’, (7.6)

where we have introduced the scaled time 7 = ¢w/27. For larger field in the

harmonic regime we get the condition

1
Ese(t)

d€sc
dr

12#
Ng

(7.7)

Note that the strong field adiabaticity condition implies that the best envelopes
are exponential envelopes since the left side of inequality (7.7) is constant for the
exponential £,(t). This is a direct consequence of the square-root dependence of
the levels spacing o given by (4.36) on the electric field.

The adiabatic condition (7.5), together with the extension of our nonlinear
theory to the case with the generalized detuning in Section 4.6, also implies the
importance of the direct resonance condition w = 1/n} for the quality of the
Trojan packet state. It also predicts that the influence of the quantum defect in
other single-electron atoms should be canceled by the frequency tuning such that
A = 0 for the best confinement of the electron. The use of the weak binding

formula (4.60) in condition (7.5) implies that the quality of the packet generation
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can be defined as

2 2
—1 _ 2 o1 _ T d_f,'_
Q@=1—|apl*=~1 G722 —TAD" (dt) (7.8)

For a given envelope of the field this function is decreasing fast with growing A,
which shows that the worse quality packet will be generated for the same envelope
when the frequency is detuned from direct resonance.

"The passage through such an avoided crossing is described by the Zener theory

[64]. The probability to jump over such a crossing is given by

~ ~ 2mle 2|2
P =exp [ [d[EL(t) — Ez(t)]/dtd

(7.9)

where €15 is a matrix element of the perturbation leading to the repulsion between
the levels which otherwise cross directly. The matrix element €, is related to the
energy gap between them, A5 = 25, and E;(t) and E(t) are the energies of the
“repulsing” states which depend parametrically on time ¢.

For the Trojan energy line, we can estimate for the large fields from (4.36)

ld[El (t)d; Ez(t)]l ~ rﬂ% (7.10)
since the linear term in £ is leading and other levels interact weakly with the
Trojan line and are almost parallel to the field axis because of the smallness of
the matrix elements directly from our theory. The later feature also allows us

to estimate the interaction with those irrelevant levels, which leads to avoided

crossings, as

57‘0
-4 7.11
€12 < 10 ( )
This estimate leads to the condition
1 |d&se T2
- —_ 7.12
E2. | dr > Mo 50 ( )
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as a sufficient condition for diabatic passage over avoided crossings not included
within our nonlinear theory. The condition (7.12), together with conditions (7.6)
and (7.7), defines the adiabatic-rapid passage which is sufficient to generate Tro jan
packet from the resonant circular state.

We have solved the time dependent Schrédinger equation numerically with a
two dimensional version of the circular state ng = 20 taken for the initial condition
[45]. The frequency of the circularly polarized field was tuned to the Kepler
frequency of this state, w = 1/nj. The field was switched on exponentially during
twenty optical cycles according to the formula £(t) = £e~%2(t=20) yntil the value
& = 0.016w*/® was reached (&, = 0.016). After the turn-on was complete we
monitored an additional ten cycles of evolution with the constant value of the
amplitude £ = &. Fig. 7.1 confirms our prediction. It shows the formation of a
sharply angularly localized packet during the adiabatic switching process.

To check this confirmation quantitatively, we have also calculated the correla-
tion functions C(t) and P(t) as defined by (5.6) and (5.7). The predicted function

(3.63) used in the correlation function had the following parameters.

ly = 20,
re = 388.69,
A = 0.05706, B =0.71656, C = —0.13860 (7.13)

The growth of the correlation function C plotted in Fig. 7.2 shows that a state
with a large component of Trojan packet is actually generated. It is important to
note that the probability (Fig. 7.3) of escape out of the circle 1 — P is negligible.
This is represented by the decrease of the function P, which is shown in Fig.
7.3. We have also solved numerically the time-dependent and field-dependent

Schrédinger equation for the anti-Trojan wave function [71]. We started from a
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Fig. 7.1. Adiabatic angular localization of electron probability density. Snapshots
of |®|2 at ¢t = 0 and after 6, 14 and 20 cycles show increasing angular bunching
during exponential switching of the field. The initial state is the circular state

for ng = 20. The black dot in the center indicates the position of the nucleus

(z=y=0).
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Fig. 7.2. Correlation function C(t) defined in (5.7) between the numerical solution

® and the predicted solution from the modified Gaussian approximation (3.63).
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Fig. 7.3. Total electron probability P(t) as defined in (5.6). The values along the

P axis emphasize the negligible loss to ionization.
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prepared circular state and turned on the C.P. field in a quasi-adiabatic manner
for 20 C.P. field cycles and then held the C.P. amplitude constant at the value &o
for an additional 10 cycles. As in the Trojan case the frequency of the field was
chosen equal to the Kepler frequency of the ny = 20 circular state.

In the anti-Trojan case we applied a field with the same frequency and & =
0.0064w=%/3, but the initial state was the circular state with principal quantum
number one atomic unit lower, i.e., ng = 19, therefore slightly out Keplerian
resonance, as predicted by the theory. The field in this case also generates a
packet state, shown in Fig. 7.4, which orbits around the nucleus, but the point of
electron localization is shifted approximately 180° with respect to the previous case
so we observe the probability density concentrated at the left side of the nucleus
at the end of each cycle. Because of its non-classical stability, the anti-Trojan
packet requires some weak “wings” that reach to each other around the nucleus,
resulting in a characteristic “pull-tab” shape. Note that the spacing between two
Kepler frequencies of two neighboring circular states is a small fraction of the

driving frequency
= (7.14)

and this detuning from the Kepler frequency of the state ng — 1 is enough to flip
the phase of the electron localization by the 7-angle with respect to the driving

field.

7.3 Expansion and compression of Rydberg atom

Another kind of adiabatic process may be considered when the frequency of the
external field changes slowly and the field strength remains constant. In the strong

field limit and in tight binding approximation (4.61), dressed energies depend
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t=29

Fig. 7.4. Trojan versus anti-Trojan wave packet formation. (a) The initial state
is a circular state with ng = 20. (b) Anti-Trojan wave packet formation. The
initial state is a circular state with ny = 19. Note that localization occurs at the
oposite side of the nucleus from the Trojan case. In both (a) and (b) the CP field

was switched on quasi-adiabatically and w = 1/203.
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linearly on the frequency of the external field and they are separated by o ~ w_.

In that case we can estimate the adiabatic condition from (7.5) as

-2/3 dw
‘”3 o <1 (7.15)

which for small changes of w close to the value 1/nd leads to the condition in

terms of the scaled variables

-~

dw
. scy 7.
- < 6r€ (7.16)

where we have introduced the frequency scaled to the resonant one 1/n, & = wn3.

In the weak binding limit £,. <« 3/8n2 the Trojan energy line as a function w
has a weakly avoided crossing with the first deexcited level with a gap which can
be estimated within the weak binding approximation [65] as A, = Erg. In order
to remain on the Trojan energy line in the weak field limit this crossing must be
passed adiabatically. Using the Zener probability condition (7.9) this leads to the

estimate

dw 7 2
pr < 5(57‘0) . (7.17)

This condition for small changes of w near the resonant value w = 1/nd leads to

the following condition in terms of scaled variables

do &2
% < wzn—?. (7.18)

Fig. 7.5 shows the energy levels as a function of the frequency of C.P. field
w calculated numerically using the aligned states basis between two consecutive
resonant values. Figs. 7.6 and 7.7 show the levels for those resonant values as
functions of the electric field. The Trojan lines have weakly avoided crossings with

other levels not included within our nonlinear theory. The passage through such
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crossings should be diabatic and the estimate of the interactions (7.11) leads for

both the weak and strong fields to the condition for diabatic passage

dw T 2
E > %(ETO) (7.19)

which in terms of scaled variables is

do _ =% £2
ar > I—O—O'n—g (7.20)

The conditions (7.15), (7.17) and (7.19) define the adiabatic-rapid passage
which should be sufficient to keep the electron in its Trojan packet state when
changing the frequency of the C.P. field. Note that in the weak field limit con-
ditions (7.17) and (7.19) may be difficult to fulfill since obeying one leads to the
border of applicability of the other.

Both the formula (3.58) and (4.39) for the wave function of the Trojan packet
predict that absolute spreads of a Gaussian in all spatial dimensions scale like

- 3/2
w2 = p32

This means that by a frequency change one can compress and
expand the region of the electron localization.

Fig. 7.8 shows the electron compression by linearly chirping the frequency
between the values resonant with n = 24 and n = 18. Note that the electron
probability density remains in its well localized packet state while being com-

pressed and following helical trajectory.
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Fig. 7.5. Energy spectrum as a function of frequency between two resonant values
w = 1/21% and w = 1/20° for the fixed electric field strenght £ = 0.016/20%.
Trojan lines can be identified from their proper connection with triplets for the

resonant values (Figs. 7.5 and 7.6).
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Fig. 7.6. Energy spectrum as a function of electric field scaled to w = 1/20°
for the lower frequency boundary of Fig. 7.5 w = 1/213. The energies along
the horizontal line coinside with the energies for the lower boundary frequency in
Fig. 7.5. The crossing between the horizontal line and Trojan triplets determine

starting points for Trojan lines in frequency domain in Fig. 7.5.
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Fig. 7.7. Energy spectrum as a function of electric field scaled to w = 1/203
for the upper frequency boundary of Fig. 7.5 w = 1/20% (same as Fig. 4.8).
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Fig. 7.5.
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Chapter 8
Theory of Detection of
Localized States

8.1 Effect of a short pulse on the quantum state

The new experimental technique of generating half-cycle pulses has made it possi-
ble both to create atomic wavepackets and to probe their momentum distributions
[66]. The condition of a successful probing is that the duration of the pulse must
be much shorter than the characteristic time related to the wavepacket dynamics.

Now we consider ionization of the state (4.38) by such an ultra short half-cycle
pulse at the time ¢ . When the pulse is much shorter than a period of the linearly

polarized field it can be represented by an extra potential [67]
Vs(r,t) = =F - ré(t), (8.1)

where F is the total impulse given to the electron by the pulse. The Schrédinger

equation with the total hamiltonian.

(B + Ve, ) =i 52 5.2

for small time ¢ can be written in the interaction picture with ;5 = e~iHO)t g,

[e"H Oy (x, 1) eiH(O)t]‘I,m - idgltra

(8.3)

and now easily integrated over infinitesimal time e. Thus the quantum state just

after the action of the d-pulse is

Us(r,t +¢€) = eF T (r, ). (8.4)
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This equation reflects the intuitively clear fact that the momentum has been
transfered to the electron by the d-pulse which leads to an aditional phase factor

of the wave function.

8.2 Scattering cross section for §-pulse ioniza-
tion

Having the result of the action of the short pulse on the quantum state we can
now calculate the cross section for the electron ejection in given direction. Further
we assume that in the ionization experiment electron is no longer subjected to
the influence of the C.P. field so we may use Coulomb continuum states as the
scattering states. If ¢x(r) is a continuum state, the differential ionization cross

section for -pulse ionization is [68]

do

_ 2
o |

p(k)| [ 60V W, t + )dr (85)

where p(k) is the density of states around ¢,. A particularly simple expression
given by (8.5) may be obtained for the Trojan wave packet within the Gaussian
approximation (3.47) after approximating the continuum state by a plane wave
¢r(r) = e* /2732 which can be done for sufficiently large momentum k since

(8.5) containes the Fourier transform of a Gaussian.

If we assume the ionizing pulse in the direction of the z axis, F = —F%, we
obtain
do N2j? (kL — F coswt)?
—(k 3 k ,kz, t ——= 8.6
dQ( Ty vy ) (271')3[(143 + Cz)Dw3] €xXp B(d ( )
(k; — F coswt)®*C? + (k| — F sinwt — wz)2B?
X exp— w(AB? + C2B)
2
X exp—==

Dw’
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where

k; = kgcoswt— kysinwt (8.7)

k, = kgsinwt+ kycoswt

In the plane of the packet motion k£, = 0 and in the direction parallel to
the ionizing pulse k&, = 0 this cross section has two maxima per period as a
function of time. For ¢t = 7(j + 1/4)/w, the maximum value is reached for the
resonant momentum transfer £k, = F + wzy. It means that the ionization in the
direction of the ionizing pulse is the largest when the Trojan packet momentum
and the impulse of the §-pulse are parallel to each other. This result immediately
suggests the detection of the Trojan packet state in an experiment analogous to
the pump-probe experiment suggested for the detection of the circular-orbit wave
packets in bare hydrogen or performed for the detection of the angularly localized
wave packets [69]. In this experiment the launching of the ionizing ¢-pulse should
be timed to the phase of the circularly polarized field which generates the Trojan
packet, and spatially resolved measurement of the ionization should be performed.

For any rotating frame eigenstates given by (4.37) the differential cross sec-
tion (8.5) can be calculated analytically using the exact states of the Coulomb

continuum |k >

<rlgk> = (—2# exp (7/2&)['(1 + ¢/k) exp(iR - r) (8.8)

x 1F(—i/k,1,—iK -t — ikr),
where  F; is a confluent hypergeometric function of the first kind. This can be
done since the matrix elements < x|e®F*|n,n — k,n — k — s > in the projection
< kle’F*|jks > (t) = exp [-¢EL ] (8.9)

XY < kleFTn,n~k,n—k—s>al,, exp[—i(n—k - s)wi]
n



with |jks > by < r|jks >= Uj(r,t), have explicit analytical form. The latter

follows from the expansion

<kleFTIn,n—kn—k—s>= (8.10)
n—|m|—1

Y. <n,ng,min,n—kn—k—s>< & exp(iF - rny, ng,m >,

n1=0

where |n;,n2, m > are the parabolic states and n; +np, = n — n—k~s| -1
Further [68] the transformation matrix < n,, n,, m|n,[,m > can be expressed in

terms of the standard Clebsch-Gordan coefficients C(jy, jo, j; m1, ma, m) [55]

< ny,ng, min, l,m >= (=1)M+GImi-m)/2 (8.11)

C[(n - 1)/21 (n - 1)/211; (m +ng — nl)/21 (m +n — 77,2)/27 m]

and the matrix elements < &| exp(iF -r)|n;, ny,m > are known [68]. An especially
simple expression can be obtained for the states spanned by the circular states
manifold ¥ = 1, s = 0, i.e., the ones which include the Trojan packets j=0,
and by approximating the Coulomb continuum by plane waves | >~ |k >. For

k = (k;,0,0) we get

< k|eFT|jks >= exp [~iE] 1] (8.12)

2
V2 Y ad oot 1 27
2r & (n — 1) nntt

(ke = )" [k~ Y ]

n?
Fig. 8.1 shows a sample differential cross section (8.5) as a function of time and

k for k; = ky = 0 as obtained from the formula (8.6). Fig. 8.2 shows the cross

section obtained from the formula (8.12) and Fig. 8.3 from the numerical solution.
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Fig. 8.1. Normalized differential cross section (8.6) (divided by the density of
levels) in the direction parallel to the ionizing d-pulse calculated with the plane-
wave continuum and Gaussian wave function (3.47) for w = 1/20% and €,, = 0.016
as a function of time during one optical cycle. Note that a single flash appears
during the cycle in each direction. One unit of the wave vector k; is the momentum

of the Trojan packet wrg.
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Fig. 8.2. Normalized differential cross section from the expansion (8.12) (divided
by the density of levels) in the direction parallel to the ionizing §-pulse calculated
with the plane-wave continuum and the Trojan state within nonlinear approach
(4.37) for w = 1/20° and &,, = 0.016 as a function of time during one optical
cycle. The deviation of the packet from Gaussian form in Cartesian coordinates
leads to broadening of the peaks in the time domain. One unit of the wave vector

ks is the momentum of the Trojan packet wry.
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Fig. 8.3. Normalized differential cross section (8.5) (divided by the density of
levels) in the direction parallel to the ionizing §-pulse calculated numerically with
the plane-wave continuum for w = 1/20% and &,. = 0.016 as a function of time
during one optical cycle (between ¢ = 20 and ¢ = 21) for the wave packet generated
in the adiabatic turn-on shown in Fig. 7.1. One unit of the wave vector &, is the

momentum of Trojan packet wryg.
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Chapter 9
Summary

The theory presented here describes the quantum dynamics of a hydrogenic
single electron atom in the case when the frequency of a monochromatic driving
field is nearly equal to the spacing between unperturbed Rydberg levels and the
quantum states have large angular momentum. By a new choice of basis states
we have managed to reduce a complicated quantum system to a simple pendulum
with wave functions well understood as solutions of Mathieu’s equation. The only
dynamical parameter of the theory, p = 4£/3w?, has a clear physical interpre-
tation as 4/3 of the ratio between the Volkov radius and the Bohr radius. The
theory predicts the existence of two classes of eigenstates that are well-localized
packets which move in the laboratory frame along circular orbits. The so-called
Trojan states, for larger electric fields, can be accurately predicted within a sim-
pler harmonic approximation, however anti-Trojan states are a direct prediction
of nonlinear theory.

In the theory the inverse of the principal quantum number number 1 /n is as-
sumed to be very small. This fact however should not lead to the conclusion that
the existence of the localized states can be explained on the basis of classical me-
chanics. For both Trojan and anti-Trojan wave packets the phase space distribu-
tions calculated from the quantum mechanical wave functions significantly overlap
with regions where the corresponding classical dynamics is chaotic [70, 71]. This
allowed us to associate anti-Trojan states with quantum scars [71] and gave new
insight into the quality of classical versus quantum-mechanical harmonic approxi-

mations {70]. Both the pendular and harmonic approximations work better on the
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quantum mechanical level and this can be well understood within the hydrody-
namic approach to quantum dynamics [72]. For bound quantum states quantum
mechanics is never a small correction to classical mechanics as the classical forces
exactly balance effective quantum mechanical forces.

The strongest and most striking prediction of our theory, beyond just the
existence of two classes of localized states, is that the nonlinear response of the
electron localization is enormously sensitive to the relation between the quantum
number of these states and the frequency of this field. This imprint of Trojan
nonlinear, resonant dynamics may be very helpful for the detection of both Tro jan
and anti-Trojan states. This feature can also be used to control the relative phase
of the induced electron dipole moment of the Rydberg atom with respect to the
driving C.P. field. The adiabatic extension of the theory for the case when the
frequency changes slowly predicts that compression and expansion of the electron
orbit accompanies this process. An extension of the theory using the RWA predicts
that a linearly polarized electromagnetic field is also sufficient to support and
generate well localized states

Extensions of the harmonic theory have been made to the case when a magnetic
field is perpendicular to the plane of polarization of the C.P. field (73]. This
combination of fields is also able to support coherent propagation of nondispersing
Gaussian-like wave packets. Also the very small ionization of localized states,
which is neglected in our theory, exhibits interesting behavior [74] closely related to
conductance fluctuation in mesoscopic rings. The peculiar localization properties
of Trojan states also motivated us to test hydrogen in a linearly polarized field as
a magnetic-field-sensitive quantum magnetometer [75).

Another related class of problems arises with the question whether localized

electron wavepackets exist, where the electron probability cloud is frozen in shape
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without any external fields and moves periodically along a well defined trajectory.
These have been predicted both in molecules with a permanent dipole moment of
the core [76] as well as in a two-electron atom [77] which would be a true quantum
realization of the “Rutherford atom”.

The only ultimate test of each theory is an experiment, and we hope that both

Trojan and anti-Trojan packets will be observed in the laboratory in near future.
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