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CHAIN REACTION WITH CHARGED PARTICLES

With the discovery of the fission chain reaction with
neutrons, the possibility of obtaining a chain reaction
with charged particles was abandoned because of the
small efficiency of charged particles in nuclear reac-
tions. In the most advantageous case, T (D, n)
He4, the efficiency attained is only ~ 5 X К)-3 reactions
per 14 Mev deuteron. However, no note was taken
of the fact that the efficiency depends on the physical
conditions and in some cases may be greatly increased.
This is especially true for nuclei of small charge, where
the factor of Coulomb barrier penetration is not too
high. The development of the chain reaction with
charged particles is therefore possible only for light
nuclei, where the release of nuclear energy is due to
the process of fusion. Only highly exoenergetic
reactions of large cross sections may lead to the fusion
chain reaction ; these are the same reactions as those
which are involved in thermonuclear reactions.1

FORMULATION OF THE PROBLEM

The mechanism of a fusion chain reaction, which is
due to in statu nascendi reactions, is as follows. In an
exoergic reaction A + B, in which weakly bound
groups of nucléons of nuclei A and В form strongly
bound groups of reaction products, we obtain particles
having kinetic energy. Part of their kinetic energy
is transferred in elastic collisions directly to the A and
В nuclei of the medium. The recoiling A and В
nuclei, in the process of slowing down to thermal
energy, have some probability of leading again to the
reaction A + B. Under normal physical conditions
the dissipation of the energy of the charged particles
in collisions with electrons is so large that their range,
L, in the medium is much smaller than the mean-free
path, X, with respect to the nuclear process. There-
fore, only a small fraction of recoil nuclei lead again
to the A + В reaction. The development of an
avalanche is possible when the sum of ranges of the
recoil nuclei ^jX-% is comparable to X. Since 2¿£¿ —
EQ(dE/dx)~1 and A ~ (iV^cr»-1, where EQ denotes the
kinetic energy released in the A + В reaction, dE/dx
the average energy losses of recoil nuclei per unit
path length, N the density of reacting nuclei of the

medium, <(c) the mean cross section for the A + В
reaction, we can write

7>l(dE/dx)~l. (1)

If we assume {a) ~ 10~24 cm2, EQ ~ 10 Mev, we
find that the atomic stopping power or stopping factor
(dE/dx}/N == <CJ> EQ would be 10~17 ev atom-1 cm2.
Under normal physical conditions it is about a thous-
and times higher,2' 3 and we are far from satisfying
the criterion (1).

The main idea of the problem involves the depen-
dence of the atomic stopping factor on the physical
conditions.

Under normal physical conditions, in the moderate
energy range, the most important losses of energy of
heavy charged particles are due to scattering from
electrons. They are about four thousand times
higher than the energy losses in all other processes.3

The atomic stopping factor due to scattering from
electrons was discussed in detail by the author,4

and, according to Eq. (6) of Ref.4, for a particle f
having a velocity V^ and a charge Z^e, it is

Z? f(Ve);G[(Ve)]dVe (2)/dE\sc __
\ dx /el ~~

where f(Ve) is the momentum distribution of electrons
in the medium and G the universal stopping power
function given by Eq. (8) of Ref. 4. There it was
shown that these losses depend mainly on the velocity
distribution of the electrons, especially in the case
Vg < Ve- In the limiting case V¿ <C Ve, the asymptotic
value of G becomes § {VJVe)

z whereupon we have
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Hence we see that the energy losses connected with
the scattering from electrons decrease very strongly
with their velocity. The electron momentum distri-
bution can be shifted into higher velocities by a
considerable rise of temperature or by increasing the
density up to the strong degeneracy of the electron
gas. In this way we can decrease the atomic stopping
factor so that the condition (1) is fulfilled.

Atomic Stopping Factor

As mentioned above, the main energy losses of
charged particles are due to scattering from electrons,

270



FUSION CHAIN REACTION 271

Electron bound in hydrogen!

Plasmo electron» (N = Ю2 4)

1941.1
0.01

Proton energy in Mev

Figure 1. Theoretical calculations of the stopping power of
electrons bound in hydrogen, electrons of plasma at different

temperatures, and electrons of a Fermi gas

cross section of particle \ from the nuclei A, and N
the number of nuclei per cm3. The first term in Eq. (6)
represents the Coulomb scattering, and the second the
nuclear scattering, which we assumed isotropic in the
center-of-mass system.

The stopping factor due to inelastic collisions with
nuclei is:

/
(7)

The sum is taken over all channels with the excitation
energies AEi.

The energy losses connected with the bremsstrah-
lung7 of heavy charged particles are very low in
comparison with the losses given above; therefore,
they can be safely neglected.

Finally, the stopping factor of nucleus A and
its ZA electrons is :

dE

which scattering depends on the state of the medium.
To evaluate the stopping factor of plasma

electrons 5 we have to use the Maxwellian momentum
distribution in Eq. (2). We obtain an approximate
dependence on the temperature of the plasma if we
make the substitution f{Ve) = ô «Fe> — Ve), where
(Ve) = (8kT/7im)* is the mean thermal velocity of
electrons. In the case of interest, V^<^ Ve, we have

(' iimYI*

Ч (4)a/dE\sc

\^/plasmaelectrons ~ 3 m \8kTJ

Similarly, taking into account the momentum distri-
bution of a Fermi gas, we obtain the stopping factor
of Fermi gas electrons {cf. Eq. (18), Ref. 4 ; also Ref. 6)

ы 1
Fermi electrons

W.ln (5)

where Fmax = {3n2)i{ñ/'m)Neb) Ne the number of
electrons per cm3.

The results of exact computations, where for the
maximum impact parameter we have put Anax =
2V<r* (Appendix 1), are plotted in Fig. 1 for various
temperatures and densities.

A decrease in the electron scattering losses increases
the role of energy losses connected with the interaction
with the nuclei of a medium.

The contribution to the atomic stopping factor due
to elastic scattering from nuclei of mass WA and
charge Z^e is:

/dE\elasticsc

(6)

where /igA is the reduced mass,
(wj + nixf and <3gAsc the elastic nuclear scattering

KgA =

The total atomic stopping factor of hydrogen plas-
mat for protons and the relative contribution of
their components in various conditions are plotted in
Fig. 2.

Evaluation of Multiplication Factor

To determine the exact conditions for the develop-
ment of an avalanche, we shall examine an infinite
homogeneous medium formed by a mixture of two
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Figure 2. The stopping power of hydrogen plasma andjthe
relative contribution of its components

t As shown above, the stopping factor of hydrogen plasma
under the conditions existing in the sun, ^ 2 x 107 °K,
is about one hundred times lower than that of hydrogen
under normal physical conditions. Therefore, Bethe's calculat-
ions 8 of the efficiency of reactions in statu nascendi in the
sun (with the assumption that the energy losses are approxi-
matively the same in both cases) are not valid.
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kinds of nuclei, A and В, which can initiate the exo-
ergic reaction. We denote by JVA and NB the number
densities of reacting particles, by ОАЪ^ the laboratory
cross section for the reaction A + B (the bombarding
particle is denoted by the first lower index) with the
emission of the particle £. The particles, of high
kinetic energy, obtained from this reaction produce a
certain number of recoil nuclei.

If f^(E^°) is the energy distribution of the £ par-
ticles obtained from each reaction A + B, then the
number of £ particles in the energy interval, E^° to
Eg0 + dEg°, is fg(Eg°)dEg0. Since the major part of
the reaction A + В in the avalanche occurs in the
moderate energy range (100 — 500 kev) and since the
reaction A + В is strongly exoenergetic, we have
assumed that this distribution is independent of the
energy of the entrance channel. If in the result of
reaction A + В we obtain two particles, the function
fg{Eg°) is the д{Е£ - Ей) function. Owing to the
destruction of particles £ on interaction with the A
and В nuclei, the initial number fg(Eg°)dEg° of
particles along the path x drops to the value
q (Eg°,x)fg(Eg°)dEg where

q (Eg*, x) = exp - JQ

X(NA agA + NB ^ j dx (9)

and о^А(а^в) is the total reaction cross section of the
particle £ with the nucleus A (B ). Taking into account
that the energy of particle £ on the path x drops from
E£ to Eg because of energy losses, we can write the
last expression in terms of Eg

=exp-j;
{dEgjdx

(10)

where (dEg/dx) denotes the loss of energy of the
particle per unit path length. Introduce

the cross section for the production of recoil nuclei
A of energy Ex to EA + dEA by the particle £
with energy E^. Then the number of the recoil
A nuclei, with energy interval EA to EA + dEA

produced by the particles £ from the reaction A + В
along their paths, is

ga(EA)dEA =

{dEgldx)
(П)

a£ASC{Eç> EA) is given by the scattering differential
cross section а^с(Е^, в) and the relation between the
angle of scattering and loss of energy in the collision.9

Summing up all the products of the A + B reaction
we obtain:

We can write a similar expression for the energy distri-
bution of recoil nuclei B. As a result of the elastic
scattering of the first generation of A and В nuclei
we obtain the second generation of recoil nuclei of
the medium. With the help of the above considera-

tions we can write the energy distribution for the nth.
generation of recoil nuclei A :

aA(n) (£ A ) = f gA(n

>A, E»A)

(7AASC(E"A, EA)

(dEn
A/dx)

NB aBAsc(E"BEA)q(E'B,E"B (dE"B/dx) '

(13)

If we add the energy distributions of all generations we
obtain the energy distribution of the whole cascade
initiated by the particles from the reaction A + B :

GA{EA) = ХГС£А(И)(£А). (14)

Having obtained the distributions GA{EA) and, in a
similar way, GB(EB), we can give the number of
A + B reactions in the slowing-down process of the
cascade initiated by the particles from the one reaction
A + B:

NBOAB(E'A)q

(15)

k=JGA

X(EA,E'A)

X (Ев, Е'в)
(dE'B/dx)

If the reaction A + B has only one exoergic channel
the number k is the multiplication factor for the
given medium. The condition for the development
of the avalanche, therefore, is k > 1.

In the numerical calculations, as long as the slowing
down process of the products of reaction A + B and
recoil nuclei is due to scattering from electrons, we
can take into consideration only the first generation
of recoil nuclei. Then from Eqs. (4), (5) and (15) we
have :

a. in the case of charged products of the reaction A + B

Y-i1* forplasma

jeiJ |дте2 for degenerate medium
b. in the case of neutrons

. , /dE\sc~]-1 (T3I* for plasma
dx /el for degenerate medium

(17)

Critical Mass

All our present considerations concern the condi-
tions for the development of fusion chain reactions in
infinite media. In a finite medium the conditions
are different and a critical mass exists as in a fission
chain reaction.

In the first approximation, the critical mass can be
estimated very easily if we consider that the mean-free
path Я with respect to the elastic scattering of the
particles taking part in the reaction has to be com-
parable with the dimension L of the system. If we
denote by N the number of nuclei of a medium in a
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Figure 3. The multiplication factor in 50% D-T plasma as a
function of temperature

unit volume, by m the mass of a nucleus in grams,
and b y <a> s c the cross section for elasting scattering,
we obtain mcr ^ W^ZVA8 = w1(^o') s c)"~3 iV~2. Taking
into account t h a t <V>SC ^ 10- 2 4 cm 2 and m1 ъ 10~24g,
the critical mass in grams is

1048/iV2. (18)

We see t h a t the critical mass is very strongly depen-
dent on the density of a medium. For densities
N = 102 8, 102 4, 102 0 nuclei/cm3, the critical masses
are 10~~8, 10°, 108 grams respectively.

NUMERICAL CALCULATIONS
Now, to illustrate the theory given above we shall

determine the conditions for the development of a
fusion chain reaction in a D-T mixture.

As a result of reaction D + Twe obtain alphas and
neutrons with energies ~ 3.5 Mev and ~ 14.1 Mev
respectively. Because of the much greater initial
energy and much lower energy losses for the neutrons,
most recoil nuclei D and T result from scattering of
neutrons; therefore, according to Eq. (12), gi>(1) {Ев)
ъ* gni)(Ej)) and £т(1)(£т) ^ £пт(£т). Taking
into account the fact that the absorption of fast and
intermediate neutrons in the D-T medium is negligibly
small we have qn t& 1. Assuming the scattering of
neutrons from D and T nuclei isotropic in the center-
of-mass system, we obtain

<TnDSC(£n, Ев)

anT

sc{En>ET)

(TnDSC (En)

OnTsc(£n) (19)

Because, in the first approximation, the slowing down
of neutrons is due to elastic scattering from D and T
nuclei

\ Kn n onT
scNT (20)

the energy distributions of the first generation of
recoil nuclei are, respectively:

ГЕв/knB d
gnB{EB) ъ -(ъ

X

1 +
(21a)

Jl4.1

X -. (21b)

Since the energy losses of deuterons and tritons up to
107 °K, in the case of a plasma, and up to 103 g/cc, in
the case of a degenerate medium, are due to scattering
from electrons we can write

NB

NT

/

Í* 0

f
/dEB\sc ,

where a -~z— and a ——
\ d% /el \ dX /el

dE'

(22)

are given by Eq. (2).

The value of the multiplication factor obtained by
the numerical calculations for a 50% D-T mixture
under various conditions are plotted in Figs. 3 and 4.
The cross sections we have put equal to the geometri-
cal cross section and авт is taken from Bame and
Perry.10

CONCLUSIONS

The role of the in statu nascendi reactions in the
release of nuclear energy depends on the physical
conditions and, in the case of high temperature or
high density, they are decisive. If we denote by £ш
the energy released in a unit volume in the thermo-
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Figure 4. The multiplication factor in 50% D-T medium as a
function of density for T = 0°K
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Figure 5. The release of energy in exoergic mixture for the
usual thermonuclear process, and for a process taking into account

in statu nascendi reactions

nuclear process, then the energy released in a unit
volume with respect to the in statu nascendi reactions is

where k is the multiplication factor for the given
medium. The factor k depends on the temperature
of the medium—or, more accurately, on the tempera-
ture of its electrons—and on its density. As the
multiplication factor approaches unity, the process
of energy release has an avalanche character and the
entire nuclear energy of an exoergic mixture is released
instantaneously. The stationary state for a slow
release of energy does not exist above the critical
temperature or above the critical density; even at a
temperature of absolute zero the exoergic mixture is
explosive.

A plot of Eth (Reí. 11) and Etot as a function of
temperature for 50% D-T mixture is given in Fig. 5.

APPENDIX

As was pointed out previously,4 the maximum
impact parameter is, in general, a function of the
velocities of interacting particles, their masses and
charges, as well as of the external fields. In each
problem this parameter must be determined separately.

In the case of electrons bound in atoms, or Fermi
gas electrons, the determination of the maximum
impact parameter does not present any difficulty,
but in the case of plasma electrons it is the
subject of many discussions. According to Cowling,12

Chandrasekhar 13 and others, it is suitable to put the
maximum impact parameter equal to the mean
distance between the ions, but according to Landau,14

Cohen, Spitzer and Routly 15 and others, it must be
equal to the Debye radius.

From Eq. (2) it follows at once that in the limiting
case Fg<C VQ the atomic stopping cross section is inde-
pendent of the assumed value of Z)max-

To determine the maximum impact parameter in
the second limiting case, Ve<^Vg, we must take into
account the fact that the charged particles of the
plasma are interacting with each other. Consider two
particles with charges + Ze and —• Ze and the distance
r between them : the Coulomb force between them is
(Ze/r)2. The transfer of momentum to such a binary
system from a particle | is negligibly small when the
force of interaction between the particle | and each
particle of the system is less than the force of internal
interaction, or: Z2(e/r)2 > ZZ^e/D)2. Taking into
account the mean value of distance between charged
particles in the plasma we finally obtain Dmâx ^ N~l.

The assumption that the maximum impact para-
meter is equal to the Debye radius will slightly change
the numerical results owing to the logarithmic depen-
dence on Anax-
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