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Simple model of two fermions occupying four energy levels
is presented. The analytical expression for the degree of cor-
relation is derived and the time evolution of this parameter is
calculated when the system interacts with the laser field. The
case of collision is considered, when it is successfully proven
that one can both decrease and increase the degree of corre-
lation using the external field.

I. Introduction

The correlation parameter originally introduced in [1]
seems to be a promissible quantity characterizing collec-
tive behaviors of the many particle system. In the fol-
lowing we try to answer the question if it is possible to
control the degree of the correlation using the external
parameters such as a laser field. In order to do this we
are dealing with the simplest nontrivial many electron
system which is established by two electrons occupying
four levels. The simplicity of the system makes not only
possible to derive the analytic expression for the degree
of correlation, but also allows us to solve the time de-
pendent Schrédinger equation thousands of times for the
different parameters of a laser field. The model may seem
to be a little artificial, but we are able to recover the main
character of the time dependence of K [1] even for such
a physical situation like the one dimensional wave packet
scattering on the the atom bounding the electron [1]. We
believe that our model can describe the correlation gain
in the process of the collision of two two level atoms in
the presence of the laser .

II. The model

We assume that our single electron Hilbert space can
be spanned by the four orthonormal states |1),2), |3), |4).
For the simplicity we assume the energy spacing between
the consecutive levels is equal, which reduces the number
of the parameters of the model. The full two electron
state vector can be thus expand as
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where the two electron basis vectors are now
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which are also orthonormal. We also assume that our
single particle basis is ’a very good’ basis in the sense
that all the single particle processes are already included
in the diagonal parameters of the Hamiltonial H. This
implies that the only non vanishing matrix elements of
the energy operator, when the laser field is switched off,
are between states which do not contain the same single
particle vector, for example < 1 3|H|24 >. When the
laser field is present we take only the matrix elements
of the dipole operator between the neighboring levels as
non vanishing and put them equal. Using all these sim-
plifications we can write our full hamiltonian matrix as

[34>=—=[I3)® [4) - |4) ® |3)], (2.2)
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so the time dependent Schrodinger equation reduces to
the system of six first order differential equations for the
complex functions c;;

ié1(t) = eca(t) + dp(t)ea(t) + v(t)cs (t),
iéy(t) = dp(t)[er(t) + ca(t) + ca(t)] + 2¢c2(t) + v(t)es(2),
ié(t) = dp(t)[ca(t) + cs(2)] + 3eca(t) + v(t)ea(t),
i4(t) = dp(t)[ea(t) + cs(t)] + v(t)ca(t) + 3eca(?t),
ics(t) = dp(t)[ca(t) + ca(t) + ce(t)] + 4ecs(t) + v(t)ea(2),

ice(t) = Sece(t) + dp(t)es(t) + v(t)ei(t), (2.4)

where we denoted ¢; = c¢12, ¢c2 = c13, €3 = C14, €4 =
€23, C5 = Ca4, C6 = c34 and ¢, v and d, are adequately
the spacing between the single particle energy levels, the
strength of the two body interaction and the strength of
the electron-laser interaction. The last two parameters
can be in general dependent on the time. We see that in
our representation the perpendicular to the diagonal of
the Hamiltonian matrix represents the purely two parti-
cle processes.

III. Degree of a correlation

The full two electron density matrix for our system is
given by

0= |¥ >< V. (3.1)

Using the expansion (2.1) we can determine the single
electron reduced density matrix

or = Z(ZI 0 |l);

by calculating the trace of g with respect of the single
electron Hilbert space. Since the wave functions in the
expansion to |¥ > in (2.1) are antysymmetric the calcu-
lation is independent of the choice of the single particle
space. Then we calculate the trace of the square of the
reduced density matrix g,, which is obviously the func-
tion of the coefficients c;; in the expansion (2.1). After
quite cumbersome calculations we get

(3.2)

1
Trp? = 53 [(c12¢34 — c13¢24 + C14C23]%, (3.3)

so our degree of a correlation has the analytical form and
is given by

B 1
= 3 = ler2(t)eaa(t) — cra(t)cas(t) + cra(t)eas(t)[?”
(3.4)

One can easily check by calculating the derivative of
K directly from the expression (3.4) and replacing all
derivatives of ¢;; by the left side of the Schrodinger equa-
tion (2.4) that K(t) = 0, when v = 0. This means that
no change of the correlation is possible, no matter how
strong the laser field is, when the purely two body in-
teraction is absent. This behavior of K(t) allows us to
understand the process of gaining the correlation during
the collision.

IV. Correlation control

In the following we define what we understand by the
control of the correlation in the collision process within
our model. First we deal with the simpler case, when the
two body interaction is present all the time during the
evolution.

IV.1 Static interaction

Let us consider first the case when the two body in-
teraction strength v in the Hamiltonian matrix (2.3) is
independent of time and the laser field is switched off
(dp = 0). In this case the time evolution of the system is
characterized by the eigenvalues of the Hamiltonian ma-
trix (2.3). We put € = 1 for all further considerations.
For the simplest initial condition, when the time evolu-
tion starts from the bare ground state (one electron occu-
pies the state |1) and the other [2) ore; = 1,¢;, =0, # 1
in (2.4)) the K(¢) can be shown to be a periodic func-
tion of time (Fig. 1). When the laser field is on (Fig.
1) the time dependence becomes pretty exotic and for
the long time scale looks almost like being chaotic (Fig.
2). This can be understood when we look at the time
dependence of the degree of the correlation in case of the
more complicated initial condition (Fig. 1). We feel intu-
itively that the time dependent part of the Hamiltonian
matrix due to the presence of the laser, acts similarly like
the frequent setting of the initial conditions for the free
field evolution. The free field time dependence of K is it-
self complicated for the majority of the initial conditions
since this parameter is a nonlinear function of ¢;;, so we
can expect even more complex behavior in the former
case.

IV. 2 Collision

Now we assume that the interaction strength v in our
Hamiltonian matrix is time dependent in a way charac-
teristic for the collision, namely is switched on for a short
time and switched off later. For the calculations we as-

sume that the time dependence of this parameter is given

by a function v(t) = \77+(tv—_to)“ (Fig. 4). It possesses

the collisional character and is smooth enough for the
purpose of solving the system of differential equations.
We can associate the parameter 27 with the duration of



the collision and to as the time when the collision oc-
curs. Let us assume first that the laser interaction is
not present putting d, = 0 in (2.3). We see (Fig. 3) that
the typical time dependence of K when starting from the
ground state exhibits the jump. This can be explained
taking into account the behavior in the case when the
parameter v is constant in time. Before the collision v(2)
is almost 0, so the K parameter remains unchanged since
one can show directly that K(¢) = 0 in this case. Dur-
ing the collision the two body interaction is present so K
can change, but after the collision is almost 0 again, so K
remains ’frozen’. It is interesting that within our simple
model we are able to reproduce the qualitative behav-
ior of the correlation parameter obtained for much more
complicated case [1] as the one dimensional nonelastic
scattering of the electron on an atom. However, as we
mentioned before we feel that our model can describe in
a simplest way the correlation gain in the process of the
collision of two two level atoms when one excludes the
ionization processes. Now we can define what we mean
by the control of the correlation by the laser field within
our model. Let us assume that we solved the system
of equations (2.4) in the case without any external field
(dp = 0) for a given initial condition. After the colli-
sion we will get some value of the correlation parameter
K which remains constant in time since the interaction
between electrons is switched off. Now we can solve the
Schrédinger equation with the same initial condition and
the same time dependence of the interaction v(t), but
when the laser field is present (dp(t) = dsin(wt)). In the
later case after the collision is over the value of K will
also remain constant. We will say that we can control the
correlation if we can both increase and decrease the value
of K with respect to the zero field case after the collision,
only by changing the frequency and the strength of the
interaction with the laser field d,. We want to underline
that we compare cases when both the initial conditions
and the shape of the parameter v(t) are the same.
V. Results and conclusions

We solved the time dependent Schrodinger equation
(2.4) plenty of times for a different strength of the col-
lision parameter V, different frequencies of the laser w
and different amplitudes of the laser field d. In all cases
we fixed the collision time 7 and the time of the oc-
currence of the collision ¢y. In all cases the laser field
was already switched on when the collision occurred
(dp(t) = dsin(wt)). One can see that one can both de-
crease an increase the degree of a correlation with respect
to the case when the laser field is absent (Fig. 5-6). The
interesting thing is that for some values of the collision
strength V' it is impossible to change the limiting value
of K in both directions only by changing the amplitude
of the laser. In some cases, for some values of the laser
frequency on can only decrease or only increase K. In the
regime of the parameters in investigation we see that if
the frequency of the external field is too high it is im-
possible to change the value of the correlation parameter

at all. We see that by using very strong laser field one
can increase the degree of the correlation much above
the gain due to the collision even if the purely two body
interaction is not too strong. It suggests that the time
dependent Hartree-Fock method can fail for the system in
the presence of the strong laser field even if it works well
for some stationary states when there is no laser field.
Summarizing, we show using very simple model that it is
possible both decrease and increase the degree of a cor-
relation using the external parameters like a laser field
in the system with the two body interaction. Within our
model we can also show analytically that the two body
interaction is necessary for any changes of the correlation
parameter.
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