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The position probability density is then

xz
~ 2[(Az)* + A /Ami(Ax)Y

Equation (12.21) is of the same form as |¢(z,0)|?, except that (Az)?
isreplaced by (Ax)? 4 #%2/4m?*(Az)?, which is equal to (Az)? + (Ap)22/m?.
Thus the center of the packet remains at £ = 0 while the breadth of the
packet increases as ¢ departs from zero in both past and future directions.
The smaller the initial uncertainty in position, the larger the uncertainty
in momentum and the more rapidly the packet spreads; the time-depend-
ent part of the above expression, t(Ap)/m, is simply the distance traveled
by a classical particle of momentum Ap in the time ¢.

Use of the é-function normalization does not alter the results of the
foregoing calculation. The expression for 4, given in Eq. (12.18) is to
be multiplied by (L/2r)}; in Eq. (12.19) the summation is to be replaced
directly by fdk, thus eliminating a factor L/2r; finally, u in Eq. (12.19)
is to be multiplied by (L/2r)}. These three factors cancel, and so Eqs.
(12.20) and (12.21) are unaffected by the choice of normalization of the
momentum eigenfunctions.

exp (12.21)

CLASSICAL LIMIT

We have seen in Sec. 7 that a wave packet always moves like a classical
particle insofar as the expectation values of its position and momentum
are concerned. However, classical dynamics is useful as a description of
the motion only if the spreading of the wave packet can be neglected over
times of interest in the particular problem.

As a simple example of the kind of parameter that indicates when the
classical limit is realized, we consider a wave packet that corresponds to a
classical particle moving in a circular orbit of radius ¢ and period T. We
shall assume that this packet is sufficiently well localized so that the
potential energy does not vary appreciably over its dimensions. Then
the classical theory can provide a useful description of the motion only
if a wave packet like that discussed above spreads by an amount that is
small in comparison with a during a time that is large in comparison
with 7. The smallest spread of a packet during a time interval of mag-
nitude ¢ is attained when Az is chosen to be of order (2t/m)}. We thus
require that (4t/m)* < a when ¢> T. This condition may be simply
expressed by saying that the angular momentum 27rma?/T of the particle
must be very large in comparison with 2. Thus for most atomic systems,
where the angular momentum of each electron is of order %, a wave
packet corresponding to a well-localized particle spreads so much in one
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period that this type of deseription of the motion is not of physical
interest.

PROBLEMS

1. Given three degenerate eigenfunctions that are linearly independent although
not necessarily orthogonal, find three linear combinations of them that are orthog-
onal to each other and are normalized. Are the three new combinations eigen-
functions? If so, are they degenerate?

2. Show that so far as the one-dimensional motion of a particle is concerned, the
functions u..(z) = 5(z — z') for all real z’ constitute a complete orthonormal set
and that each of them is an eigenfunction of the position variable z with the eigen-
value z/. Set up the position probability function and compare with that obtained
in Sec. 7.

3. If the potential energy V(z) in a one-dimensional problem is a monotonic
increasing function of z and independent of the time, show that the functions uy.(z) =
(dV /dz)}.-z» 8(z — z’) for all real z’, where V' = V(z'), constitute a complete
orthonormal set of eigenfunctions of the potential energy with eigenvalues V’. Find
the probability function for the potential energy, and show that it has the properties
that would be expected of it.

4. What changes are needed in the discussion of the momentum eigenfunctions
given in Sec. 11 if the normalization is carried through in a box of rectangular parallel-
epiped shape rather than in a box of cubical shape?

5. Find two other representations for the Dirac & function like that given in Eq. (11.9).
6. Verify each of Egs. (11.13) involving & functions.

7. Show that the two Egs. (11.20) are correct: that the momentum probability
function defined in Eqs. (11.19) and (11.17) for a normalized ¥ sums or integrates to
unity.

8. The expression in brackets in the integrand of Eq. (10.19) enables one to calculate
¢ at time ¢’ in terms of ¢ at time ¢. If this expression is called ¢{G(z’,t';z,t) in the one-
dimensional case, then y(z',t’) = i[G(z',t';z,t)¢(z,t) dz. Show that for a free particle
in one dimension

Go(z,t';z)t) = —1 [WZL_—T)T gim(z'—2)22pW=

Assume that y has the form of the normalized minimum wave packet (12.11) at
t = 0; use the above result to find y and |¢|? at another time . This G, is called the
free-particle Green’s function in one dimension (see Sec. 36).

9. Let u.(r) and us(r) be twe eigenfunctions of the same hamiltonian that correspond
to the same energy eigenvalue; they may be the same function, or they may be degen-
erate. Show that

Ju? (@) (zp= + paz)us(r) d3r = 0

where the momentum operator p, = —:#%(3/3z) operates on everything to its right.
What is the relation of this problem to Prob. 5, Chap. 2?




