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We investigate a superradiant phase transition induced by a po-
lariton instability in the system of nonlinear quantum oscillators.
We assume for simplification that the system possesses a transla-
tional symmetry e.a. the oscillators are placed on a lattice. It
enables us to introduce the soft polaritons concept similar to the
soft phonons concept in models of ferroelectrics. We find the criti-
cal condition for the phase transition and see that it is quite similar
to that which appears for the Dicke superradiance. We also suggest
the physical realization of the model by the quantum well system
and point out difficulties.

I. Introduction

It is clear for almost thirty years that the electromagnetic inter-
actions can lead to the phase transition. It is proved for the Dicke
model of superradiance [1], [2]. This model is however very restric-
tive assuming a system consisting of two level atoms coupled through
the dipole interaction with the finite number of modes of the elec-
tromagnetic field. We deal with the case of the opposite type, when
the number of interacting modes is the same as the number of atoms
or other electromagnetically active centers. It happens in the solid
state limit, when the matter excitations and electromagnetic exci-
tations photons create a new type of excitations, polaritons. First,
we use the translational symmetry of the system to simplify the
linear part of the Hamiltonian and see that it is nothing, but the
Hopfield Hamiltonian which is easy to diagonalize by the canonical
transformation [3]. We need not to drop out quadratic terms of the
electromagnetic field since we work within dipole approximation and
can eliminate them by Zienau-Power transformation. We also need



not to drop interactions between centers. We find that for the cou-
pling between the field and matter strong enough the linear system
collapses. Nonlinear part of the Hamiltonian however can stabilize
the system, but in this case the phase transition occurs. We want
to underline the strong analogy between this model and the model
of the displacive ferroelecric when, the situation is very similar to
that. The other problem we discuss is the physical realization of
the system. It is done by us for the Quantum Well system, when
one can easily see, that the strong coupling requirement and the
realization of the model are not independent.



II. Hamiltonian

We use the usual field-matter Hamiltionian in the dipole approx-
imation
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which after Zienau-Power transformation [/ = %2424 A4) can be
written as [4]
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and p(k) is the spatial charge distribution. The V' (z,) is the nonlin-
ear part of the oscillator and is approximated by vr = v(z4-24)>.
Within the validity of this model e.a when the distance between
oscillators is much larger then the size of the oscillators we can as-
sume W,p proportional to d4p and then drop the fourth term in



Hamiltonian (2.2) but renormalize the oscillator frequency e.a now
we have
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For the later purposes we will drop the tilde over the oscillator fre-
quency understanding wq as the full renormalize frequency. We drop
for a moment the nonlinear part of the oscillator potential V' (z,).

When introducing usual creation and annihilation operators for os-
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cillators z, = ai‘/;f;/*, pa = Mo ai‘/ﬁ;A, ? = M the Hamiltonian

(2.3) changes to
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We converted integrals to sums assuming that the system is in the
limited volume V' = L3 and take usual Born-Karman (B-K) condi-
tions, so k = 2f”(nm,ny,nz). As we mentioned before, we assume
the translational symmetry of the system. In the simplest case
ra = a(ng, ny,n,) when oscillators are placed on a cubic lattice,
where a is the lattice constant. Now we can introduce the polari-
tonic transformation

1
B = — exp(ikra)a’,
k \/N p( A) A
1
Bif = — exp(—ikra)aa (2.5)

VN
and define
Bj\_k = ek(k) ’ Bl—ci_v
By, = ex(k) - By,
where N = N? is the total number of oscillators. We see that

the B-K conditions for photons and polaritons are consistent since
L = N;a. For N — oo we have >, | e!k=K)ra — N§,.0 so in this limit



[Bk, Bk’+] = 6kkl and also [B/\k, B/\kl+] = 5A/\’5kk’ if only [GA, U,A/+] =
daa holds as it does. After the transformation (2.5) and dropping
all terms which do not appear in field-matter coupling we get for
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as the linear Hamiltonian. It has the same form that the well known
Hopfield Hamiltonian for linear dielectric and can be easy diagonal-
ize by the canonical transformation. We drop the cut off function,
since now the more natural limitation in the sum appears after drop-
ping not matter-field coupled operators. It is implied by the fact that
no shorter polarization waves are coupled to photons then those with
the lengh, which is equal to the smallest distance between oscilla-
tors. In the area of parameters for which the model is sensible, the
oscillator size is much smaller than a so p(k) = ﬁzﬁ—:k? can be ap-

proximated by 1 since § > % and the cut off can be ignored. The
first term of the Hamiltonian (2.6) represents the collective polar-
ization oscillators and the last their coupling to photons. In order
to diagonalize (2.6) let us introduce

a1 = Byi, as = ax

az = Bx_p, a4 = ax_j

and now (2.6) is the sum of independent parts of the same form
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Then

2 2 2
+ M
2+ 2d) + p22Mp4 + 5 (22 + 27)

2 2 2
Py +Dp3  mw 2
Hy,. = x
Ak om T 2 (

——\Z /%[(ﬁz +pa) (@1 + 24) + (p3 — 1) (w2 — 21))] (2.8)

and after the canonical transformation
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So we get two pairs of two coupled oscillators. After the second
canonical transformation for H;

X, = CLC¥2X1 + C¥2]52,
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where
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and analogical for Xy, Hy (Hs) is
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and V? = Vﬁfjﬁ is the effective dimensionless coupling constant.
0

For &2, Q2 both positive we can introduce A;, A} creation and an-
nihilation operators for P;, X; and Hy, (Hs) is now Hy = (AT A +
$)Qh+ (AF Ay + 3)oh. So we get two polaritonic branches with dis-
persion relations given by (2.12). For V2 > 0.25 however &2 < 0 for
every k and the linear system collapses. When we take the nonlinear
Hamiltonian with vz} potential correction for the oscillator (y > 0)
the system will not collapse because the nonlinearity will stabilize
it, but now the phase transition can occur.



IIT. Soft polaritons and the phase transition

Now we will discuss the case when nonlinear term is added to
the linear Hamiltonian. We use the polaritonic transformation (2.5)
to express nonlinear yz* term by By, Byi T operators. We drop all
terms which do not give the contribution to the first order energy
corrections to the linear Hamiltonian energies. This yields
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Now the full Hamiltonian becomes
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where Y., (A =1,2,3, e3(k) = %) means the sum over longitudal
modes also and ", over tranvers modes only. In order to obtain
the temperature dependent polaritonic branches we approximate the
anharmonic Hamiltonian (3.2) by an effective quadratic Hamiltonian
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It is a sum of independent Hamiltonians Hy
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where H;_,, is defined by (2.6), which are now linear. The self

consistent frequencies @, {2 can now be obtained from the solution
of the system of equations
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where (2 is the photon frequency, and @, Q are given by (2.12) with
wo and V2 replaced by &y and VQZ’—E, @y = Qo since does not really
depend on A and k. It is quite similar to that which appears for the
soft mode problem in the ferroelectric [5]. The system (3.5) can be
simplified to the form

@y = wo + [(@o, T), (3.6)

where the function f(&g,T') is defined by the system. If we assume
V? > 0.25 then for some @y = & > wo, Vi = V& = 0.25 and
w = 0. For wy =~ @j and wy > @, @ ~ 0, so we can approximate
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For temperatures low enough we can drop transvers contribution to
@y corrections in (3.4) and the equation (3.6) is now
hy 7 kT

@y = wy + mw02[6 + Sh(z — 4‘72)

] (3.8)



and can be easily solved. Since &y(7') is the increasing function of the
temperature, if only Vo;* > 0.25, then for T < T, T,: V.3 ;(T.) = 0,
ngf > 0.25 and the smaller of frequencies @ becomes imaginary. It
means that below some critical temperature the ‘paraelectric’ phase
becomes unstable and we expect < z, ># 0 for T" < T, to com-
pensate the collapse, like in case of usuall ferroelecric. For T"— T,
from above @ — 0 and the soft polariton branch appears. In order
to show the spontaneous polarization for ‘ferroelectric’ phase we try
a different approximation. Let us return to the full Hamiltonian of
the system and define some mean-field Hamiltonians

H .~ =Hpo+ Hy + Hp_p(ane =< axe >),
H<B> :HLO—FHN—i—Hf,m(B,\k — < B)\k >), (39)
where Hpo = Hy, — Hy_,, and for selfconsistency
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So, we have

Hegs = Hpo— 2 [Bu(< Baog > + < By >)  (3.12)
Ak
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Since the averages < By, > and < B,_," > are taken with respect
to the density operator with H_,~ our problem reduces to
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where we sum over all polaritons, because the transverse mode is
not coupled to its average and By3 can be approximate by 0, when
the nonlinearity is small. Now we can use the inverse polaritonic
transformation. One can easy check that it yields

Hepp =Y HY'
A
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The interesting thing which happens is that after elimination of the
field coordinates by the mean field method the system is equivalent
to the noniteracting oscillators system, where every oscillator is de-
scribed by the Hamiltonian Hf]f 7"So, the effect of the translational
symmetry is, that the every oscillator feels other oscillators and field
only by its own coordinate average < x4 >. The trivial solution of
(3.14) is < 4 >= 0. We will show that there is also nonzero solu-
tion for V2 > 0.25+O(y) We use the minimum free energy principle
[5] with the trial Hamiltonian
2 2

H, = gim + (za— < zp >)2m;u0

to calculate the free energy for the system characterized by the
Hamiltonian (3.14). We know that the free energy F' < Fy +
< HeffA — Hy >, where Fj is the free energy of the system with
the Hamiltonian Hy, Fy = kT In[2sinh(22)] and <>; means the
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average taken with the density operator with Hy,. We have

(3.15)
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Assuming < x4; >= 0 for 7 = 1,2 without the loss of generality and
defining x =< x4 > we have

(3.17)
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The best estimation for F is archieved by minimizing the right side of

(3.18) with respect to z. For %—%%—@(7) >0, V? < 0.254+0(7)

(small nonlinearity) the minimum is for x = 0 for all temperatures,
so there is no phase transition in this case. Otherwise the situation
depends on the temperature. Defining 7. by the condition

mwi  2e*n  5vh

th
+
2 EUV mwpy

kT,

coth(—) =0 (3.19)

We have x = 0 for T" > T, for the ‘paraelectric’ phase and x # 0
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for T' > T, or for ‘ferroelectric’ phase. We see that for temperatures
below some critical value spontaneous polarization appears. It is
driven by polariton instability similiary to the case of the usuall fer-
roelectric [7], when the phonon instability leads to the spontaneous
displacement of ions.



IV. Physical realization of the model

We see from the previous section that the necessary condition for
the phase transition is that V2 > 0.254+0(v). We try to answer now
how it is possible to archieve such a region of parameters in the real
physical system to keep the model applicable. First we find, how
the critical condition is related to that which appears in the Dicke
model of superradiance. In the later case it is

2|D15|* N

1 4.1).
ecoV > (4.1)

Where Dy, is electric dipole matrix element and e is energy difference
between two levels of the system. The square of the matrix element
D15 for the harmonic oscylator between its ground state and the first

excited level is simply |Dys|* = ijzo. If we use it in the condition

(4.1) and take ¢ = hwy we get V2 > 1. So the critical parameter
in our model is of the same order as the critical parameter in the
case, when someone approximate the harmonic oscillator by its two
levels and asks for the Dicke superradiance in such system. The first
conclusion of the last note is that it is difficult to archieve the critical
region in the real physical system. One can easy estimate V? ~
(Z—ZQ)nb where Aw, = 13.6 ¢V and np is the number of oscillators
per Bohr volume (Volume of the cube with the edge length equal
to the Bohr radius), so for real dielectrics V? ~ 107%. First we
will try to answer why it is difficult to get the critical value of V2
without the loss of the applicability of our model for optical oscillator
frequencies. Let us define the harmonic oscillator size as d = %,

—52,2

where 3% = 20 since the ground state wave function is ¢g ~ e™ 2

It somehow informs where the electron is mainly localized, so can
be define as the size of the oscillator. One can easily estimate d ~
N 1

(ﬁ—ﬁ)%ao- Otherwise knowing, that > ~ = (a is the distance between

nearest oscylators, ay the Bohr radius) one can asks now how large
the a should be to keep V? critical. We can easily find a ~ ag(f)—ﬁ)é.
So, when we order V2 to be critical, the distance between nearest

oscillators and the oscillator size are not independent. We just have

@ = (3)6. So, if we want to apply our model we have to assume



d > a. It makes even for % ~ 2, wy ~ 10 2wg, so in the infrared
region. Now we have clear requirements for the real physical system.
The simplest one which seems to be proper is the periodic system of
tree dimensional quantum wells (Q.W.). The energy levels for the
3-dim Q.W. are E, = g;’:’; (n2 4 ng 4+ n2). If we define nj =n; — 1
then

72712( L ,)+7T2h2
= n,+n, +n
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and we can treat the quantum well as the nonlinear quantum oscil-
lator with wy = % . Now the edge of the Q.W. d is the oscillator
dimention and all previous considerations about the applicability of
the model holds on. Using the fact that the dipole matrix elements
is significant only between two neighboring states (in the sense of

energy levels) of the Q.W. anr,n:+1|2 7 #ﬂz,—“ and for low excited
e’h

states we have |Dio|? & 5.~ —, S0 approximately the same as for the
oscillator. We have here a little different type of the nonlinearity
then we discussed in the previous section which is yataa™a. For low
excited states we have (at + a)* &~ 6a*aata + 6aTa. The Hamilto-
nian of the nonlinear oscillator which gives low excited energy levels
of the quantum well is now

B,

(n} +n, +n?) + const  (4.2)
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The necessary condition for the phase transition is now V2 > % ,

so a little stronger then for the small nonlinearity but of the same

order. The critical temperature is now determined by the condition
huwo e2N 1

i _ = 4.4
CONET. T 2meteV 8 (44)

If we want the critical temperature measurable 7, ~ 10*K and % ~

10 to keep V2 a little below its critical value then fiwy &~ 10~%¢V,
(4) =~ 10 as it should be and d ~ 500A.
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