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Announcements

Midterm:
I In class, Monday Feb. 29
I The exam will count for 20% of your final grade
I Material: basic rules of probability, common distributions,

PDF/likelihood maximization and estimators
I Properties of PDFs: marginalization, transformation rules, etc.
I No numerical component, obviously, but you may get a conceptual

question about it
Reading:

I Sivia, Ch. 3.2 and 3.3
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Best Estimates and Reliability

I Identify the best estimator x̂ of a PDF by maximizing p(x |D, I ):

dp

dx

∣∣∣∣
x̂

= 0,
d2p

dx2

∣∣∣∣
x̂

< 0

I We assessed the reliability of the estimator by Taylor expanding
L = ln p about the best value and found that

σ̂2 =

(
−d2L

dx2

∣∣∣∣
x̂

)−1

I This only works when the quadratic approximation is reasonable
I For an asymmetric PDF, it’s better to use a confidence interval when

reporting the reliability of an estimate
I For a multimodal PDF, summarizing the PDF with an estimator is not

very well defined or useful
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Example Estimators from Last Class

I Best estimator of binomial probability p (n successes in N trials):

p̂ =
n

N
, σ̂2 =

n(N − n)

N3 =
p̂(1− p̂)

N

I Arithmetic mean: best estimator of Gaussian with known variance σ2:

µ̂ =
1
N

N∑
i=1

xi , σ̂2 =
σ2

N

I Weighted mean: best estimator of Gaussian with different error bars:

µ̂ =
N∑
i=1

xiwi

/
N∑
i=1

wi , σ̂2 =
1∑N

i=1 wi

, wi = 1/σ2
i

Caution: don’t confuse width of distribution with uncertainty on the mean
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Properties of a Good Estimator (for Frequentists)
A good estimator should be:
1. Consistent. The estimate tends toward the true value with more data:

lim
N→∞

θ̂ = θ

2. Unbiased. The expectation value is equal to the true value:

b = 〈θ̂〉 − θ =

∫
dx p(x |θ) θ̂(x)− θ = 0

3. Efficient. The variance of the estimator is as small as possible
(minimum variance bound, to be discussed):

var (θ̂) =

∫
dx p(x |θ) (θ̂(x)− θ̂)2

MSE = 〈(θ̂ − θ)2〉 = var (θ̂) + b2

Segev BenZvi (UR) PHY 403 6 / 35



Table of Contents

1 Review of Last Class
Best Estimates and Reliability
Properties of a Good Estimator

2 Parameter Estimation in Multiple Dimensions
Return of the Quadratic Approximation
The Hessian Matrix and its Geometrical Interpretation
Maximum of the Quadratic Form
Covariance

3 Multidimensional Estimators
Gaussian Mean and Width
Student-t Distribution
χ2 Distribution

Segev BenZvi (UR) PHY 403 7 / 35



Parameter Estimation in Higher Dimensions

I Moving to more dimensions:

x → x , p(x |D, I )→ p(x |D, I )

I As in the 1D case, the posterior PDF still encodes all the information
we need to get the best estimator.

I The maximum of the PDF gives the best estimate of the quantities
x = {xj}.

I We solve the set of simultaneous equations

∂p

∂xi

∣∣∣∣
{x̂j}

= 0

I Question: how to we make sure that we’re at the maximum and not
a minimum or a saddle point?
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The Quadratic Approximation Revisited

I It’s easier to deal with L = ln p({xj}|D, I ), so let’s do that. Let’s also
simplify to 2D, without loss of generality, so that x = (x , y).

I The maximum of the posterior satisfies

∂L

∂x

∣∣∣∣
x̂ ,ŷ

= 0 and
∂L

∂y

∣∣∣∣
x̂ ,ŷ

= 0

I Look at the behavior of L about the maximum using its Taylor
expansion:

L = L(x̂ , ŷ) +
1
2
∂2L

∂x2

∣∣∣∣
x̂ ,ŷ

(x − x̂)2 +
1
2
∂2L

∂y2

∣∣∣∣
x̂ ,ŷ

(y − ŷ)2

+
∂2L

∂x∂y

∣∣∣∣
x̂ ,ŷ

(x − x̂)(y − ŷ) + . . .

where the linear terms are zero because we’re at the maximum.
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The Hessian Matrix

I As in the 1D case, the quadratic terms in the expansion dominate the
behavior near the maximum.

I Insight: rewrite the quadratic terms in matrix notation:

Q =
1
2
(
x − x̂ y − ŷ

)(A C
C B

)(
x − x̂
y − ŷ

)
=

1
2

(x − x̂)>H(x̂)(x − x̂)

where H(x̂) is a 2× 2 real symmetric matrix with components

A =
∂2L

∂x2

∣∣∣∣
x̂ ,ŷ

, B =
∂2L

∂y2

∣∣∣∣
x̂ ,ŷ

, C =
∂2L

∂x∂y

∣∣∣∣
x̂ ,ŷ

I Note: H(x̂), the matrix of second derivatives, is called the Hessian
matrix of L.
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Geometrical Interpretation
I Contour of Q in xy plane is an

ellipse centered at (x̂ , ŷ)

I Orientation and eccentricity are
determined by the values of A, B ,
and C

I Principal axes correspond to the
eigenvectors of H . I.e., if we solve

Hx = λx(
A C
C B

)(
x
y

)
= λ

(
x
y

)
we get two eigenvalues λ1 and λ2
which are inversely related to the
square of the semi-major and
semi-minor axes of the ellipse
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Condition for a Maximum
I L(x̂) is a maximum if the quadratic form Q(x − x̂) = Q(∆x) < 0 ∀x .
I H is real and symmetric, so there exists an orthogonal matrix

O =
(
e1 e2

)
such that

O>HO = D =

(
λ1 0
0 λ2

)
where e1 and e2 are the eigenvectors of H .

I Therefore, H = ODO>, and we can express Q as

Q ∝ ∆x>H∆x

= ∆x>(ODO>)∆x

= (O>∆x)>D(O>∆x) = ∆x ′>D∆x ′

= λ1(x − x̂)2 + λ2(y − ŷ)2

I ∴ Q < 0 iff λ1 and λ2 are both negative.
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Condition for a Maximum
I The eigenvalues of H are given by

λ1(2) =
1
2
TrH + (−)

√
(TrH)2/4− detH

where
TrH = A + B, detH = AB − C 2

I Intuition: what happens if the cross term C = 0? Then the principal
axes of the ellipse defined by Q are aligned with the x and y axes and
the eigenvalues reduce to

λ1 = A, λ2 = B

I Analogous to the 1D case, we can associate the “error bars” on x̂ and
ŷ as the inverse root of the diagonal terms of the Hessian, or

σ̂2
x = |λ1|−1 =

(
−∂

2L

∂x2

∣∣∣∣
x̂ ,ŷ

)−1

, σ̂2
y = |λ2|−1 =

(
−∂

2L

∂y2

∣∣∣∣
x̂ ,ŷ

)−1
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General Case: C 6= 0

I What happens when the off-diagonal term of H is nonzero?
I Let’s work in 2D. If we were only interested in the reliability of x̂ , then

we would evaluate the behavior of the marginal distribution

p(x |D, I ) =

∫ ∞
−∞

p(x , y |D, I ) dy

about the maximum
I Using our quadratic approximation, p(x , y |D, I ) = exp L ∝ expQ:

p(x |D, I ) ≈
∫ ∞
−∞

exp
(
1
2

∆x>H∆x
)

dy

=

∫ ∞
−∞

exp
(
1
2

(Ax2 + By2 + 2Cxy)

)
dy ,

where (without loss of generality) we set x̂ = ŷ = 0.
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General Case: C 6= 0
Solving the Gaussian Integral
Factor out terms in x , and explicitly change signs because we know that
Q < 0:

p(x |D, I ) =

∫ ∞
−∞

e−
1
2 (Ax2+By2+2Cxy) dy

= e−
1
2Ax

2
∫ ∞
−∞

e−
1
2 (By2+2Cxy) dy

= e
− 1

2

(
A+C2

B

)
x2
∫ ∞
−∞

e−
1
2B(y+Cx

B )
2

dy

where we completed the square: By2 + 2Cxy = B(y + Cx/B)2 − C 2x2/B ,
allowing us to rearrange the xy cross term.
The remaining integral is a Gaussian integral of form∫ ∞

−∞
exp
(
− u2

2σ2

)
du = σ

√
2π
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General Case: C 6= 0
Expressions for σx and σy

I Therefore, the marginal distribution becomes

p(x |D, I ) =

√
2π
B

exp
(
−1
2
AB − C 2

B
x2
)

=

√
2π
B

exp
(
− x2

2σ2
x

)
,

where
σ2
x =

−B
AB − C 2 =

−Hyy

detH
I Similarly, if we solve instead for p(y |D, I ), we’ll find that

σ2
y =

−A
AB − C 2 =

−Hxx

detH

I Note: we absorbed a negative sign back into A and B to match the
properties of the Hessian.
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Connection to Variance and Covariance
I Recall the definition of variance for a 1D PDF:

var (x) = 〈(x − µ)2〉 =

∫
dx (x − µ)2 p(x |D, I )

I This can extended using the 2D PDF

σ2
x = 〈(x − x̂)2〉 =

∫∫
dx dy (x − x̂)2 p(x , y |D, I )

I If we use the quadratic approximation for p(x , y |D, I ), we find

σ2
x =

−B
AB − C 2 =

−Hyy

detH

and similarly,

σ2
y = 〈(y − ŷ)2〉 =

−A
AB − C 2 =

−Hxx

detH
,

the same expressions we just derived (convince yourself).

Segev BenZvi (UR) PHY 403 17 / 35



Connection to Variance and Covariance
I Also recall the definition of covariance:

σ2
xy = 〈(x − x̂)(y − ŷ)〉

=

∫∫
dx dy (x − x̂)(y − ŷ) p(x , y |D, I )

=
C

AB − C 2

=
Hxy

detH

if we use the quadratic expansion of p(x , y |D, I ).
I Putting it all together: the covariance matrix, defined a couple of

weeks ago, is the negative inverse of the Hessian matrix:(
σ2
x σxy

σxy σ2
y

)
=

1
AB − C 2

(
−B C
C −A

)
=

(
A C
C B

)−1

= −H−1(x̂)
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Covariance Matrix
Geometric Interpretation

I C = 0 implies x and y are completely uncorrelated. The contours of
the posterior PDF are symmetric

I As C increases, the PDF becomes more and more elongated
I For C = ±

√
AB , the contours are infinitely wide in one direction

(though the prior on x or y could vanish somewhere)
I Also, while C = ±

√
AB implies x̂ and ŷ are totally unreliable, the

linear correlation y = ±mx (with m =
√
AB) can still be inferred
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Caution: Using the Correct Error Bar

I Be careful about calculating the
uncertainty on a parameter in a
multidimensional PDF

I Right: σ2
ii = −H−1

ii , from
marginalization of p(x |D, I )

I Wrong: get σ2
ii by holding

parameters xj 6=i fixed at their
optimal values (underestimate!)

I See difference in error bars from
two procedures at left

I Reason: when using the Hessian,
don’t confuse the inverse of the
diagonals of H for the diagonals
of H−1
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Gaussian PDF: Both µ and σ2 Unknown
I Last time we derived best estimators for a Gaussian distribution using

p(µ|σ,D, I ),

i.e., σ was given. Now we have the tools to calculate

p(µ|D, I ) =

∫ ∞
0

p(µ, σ|D, I ) dσ.

I.e., we can calculate the best estimator for σ2 not known a priori.
I First we have to express the joint posterior PDF to a likelihood and

prior using Bayes’ Theorem:

p(µ, σ|D, I ) ∝ p(D|µ, σ, I ) p(µ, σ|I )

I If the data are independent, then by the product rule

p(D|µ, σ, I ) = (2πσ2)−N/2 exp

[
− 1
2σ2

N∑
i=1

(xi − µ)2

]
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Gaussian PDF: Priors on µ, σ

I Now we need to define the prior p(µ, σ|I ). Let’s assume the priors for
µ and σ are independent:

p(µ, σ|I ) = p(µ|I ) p(σ|I )

I Since µ is a location parameter it makes sense to choose a uniform
prior

p(µ|I ) =
1

µmax − µmin

I Since σ is a scale parameter we’ll use a Jeffreys prior:

p(σ|I ) =
1

σ ln (σmax/σmin)

I Let’s also assume the prior ranges on µ and σ are large and don’t cut
off the integration in a weird way
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Aside: Parameterization of σ

I Note that we parameterized our width prior in terms of σ, not the
variance σ2. Does the parameterization make a difference?

I For the Jeffreys prior in σ,

p(σ|I ) dσ = k
dσ

σ

where k depends on the limits of σ.
I Now convert to variance ν. Since σ =

√
ν,

dσ =
dν

2
√
ν

I Therefore,

p(σ|I ) dσ = p(ν|I ) dν = k
dν

2ν
= k ′

dν

ν

I So the Jeffreys prior has the same form if we work in terms of σ or σ2.
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Posterior PDF of µ
I Substitute the likelihood and prior into our expression for p(µ|D, I ):

p(µ|D, I ) ∝
∫ ∞

0
p(D|µ, σ, I ) p(µ|I ) p(σ|I ) dσ

=
(2π)−N/2

∆µ ln (σmax/σmin)

∫ σmax

σmin

σ−(N+1) e−
1

2σ2
∑N

i=1(xi−µ)2 dσ

I Let σ = 1/t so that dσ = −dt/t2:

p(µ|D, I ) ∝
∫ tmax

tmin

tN−1 e−t
2∑N

i=1(xi−µ)2 dt

I Change variables again so that τ = t
√∑

(xi − µ)2:

p(µ|D, I ) ∝

[
N∑
i=1

(xi − µ)2

]−N/2
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Best Estimator and Reliability

I As in past calculations, we maximize L = ln p:

L = −N

2
ln

[
N∑
i=1

(xi − µ)2

]
dL

dµ

∣∣∣∣
µ̂

=
N
∑N

i=1(xi − µ̂)∑N
i=1(xi − µ̂)2

= 0

I This can only be satisfied if the numerator is zero, so

µ̂ = x̄ =
1
N

N∑
i=1

xi

I In other words, the best estimate of the PDF is still just the arithmetic
mean of the measurements xi
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Best Estimator and Reliability

I The second derivative gives the estimate of the width:

d2L

dµ2

∣∣∣∣
µ̂

= − N2∑N
i=1(xi − µ̂)2

I Therefore, setting σ̂2 = −(d2L/dµ2)−1 we find that

µ = µ̂± S√
N
,

where we define

S2 =
1
N

N∑
i=1

(xi − µ̂)2 =
1
N

N∑
i=1

(xi − x̄)2

I This is almost the usual definition of sample variance but it’s narrower
because we divide by 1/N instead of 1/(N − 1).
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Aside: Uniform Distribution in σ

I Suppose at the beginning of this problem we didn’t choose a Jeffreys
prior for σ, but a uniform prior such that

p(σ|I ) =

{
constant σ > 0
0 otherwise

I In this case, the posterior PDF would have been

p(µ|D, I ) ∝

[
N∑
i=1

(xi − µ)2

]−(N−1)/2

and the width estimator would have been the usual sample variance

S2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 =
1

N − 1

N∑
i=1

(xi − x̄)2

I In other words, the Jeffreys prior gives us a narrower constraint on µ̂!
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Student-t Distribution
I What is the shape of the PDF with unknown σ

p(µ|D, I ) ∝
[∑N

i=1(xi − µ)2
]−N/2

? First, write

N∑
i=1

(xi − µ)2 = N(x̄ − µ)2 + V ,

where

V =
N∑
i=1

(xi − x̄)2

I Substituting into the PDF gives

p(µ|D, I ) ∝
[
N(x̄ − µ)2 + V

]−N/2
I This is the heavy-tailed Student-t distribution, used

for estimating µ when σ is unknown and N is small

Segev BenZvi (UR) PHY 403 29 / 35



Student-t Distribution

I Published pseudonymously by
William S. Gosset of Guinness
Brewery in 1908 [1]

I t-distributions describe small
samples drawn from a normally
distributed population

I Used to estimate the error on a
mean when only a few samples N
are available, σ unknown

I Basis of the frequentist t-test to
compare two data sets

I As N → large, the tails of the
distribution are killed off (Central
Limit Theorem)
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Best Estimate of σ

I Now that we’ve calculate the best estimate of a mean, what’s the best
estimate of σ given a set of measurements?

I Start with the posterior PDF p(σ|D, I ):

p(σ|D, I ) =

∫ ∞
−∞

p(µ, σ|D, I ) dµ

=

∫ ∞
−∞

p(D|µ, σ, I ) p(µ|I ) p(σ|I ) dµ

I Plugging in our likelihood and priors gives

p(σ|D, I ) =
(2π)−N/2

∆µ ln (σmax/σmin)
σ−(N+1)

∫ µmax

µmin

e−
1

2σ2
∑N

i=1(xi−µ)2 dµ

∝ σ−(N+1) e−
V

2σ2

∫ µmax

µmin

e−
N(x̄−µ)2

2σ2 dµ
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χ2 Distribution
I Ignoring all constant terms (including the integral over µ) leaves

p(σ|D, I ) ∝ σ−N exp
(
− V

2σ2

)
I Note that if we had used a uniform prior for σ we would have

p(σ|D, I ) ∝ σ−(N−1) exp
(
− V

2σ2

)
Let’s maximize this expression:

L = ln p = −(N − 1) lnσ − V

2σ2

dL

dσ

∣∣∣∣
σ̂

=
−(N − 1)

σ
+

V

σ3 = 0

∴ σ̂2 =
V

N − 1
=

1
N − 1

N∑
i=1

(xi − x̄)2 = s2
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χ2 Distribution
I Taking the second derivative of L gives

d2L

dσ2

∣∣∣∣
σ̂

=
N − 1
σ̂2 − 3V

σ̂4

=
(N − 1)σ̂2

σ̂4 − 3(N − 1)σ̂2

σ̂4

= −2(N − 1)

σ̂2

I Therefore, the optimal value of the width is

σ = σ̂ ± σ̂√
2(N − 1)

I Note: with the change of variables X = V /σ2, we see that

p(σ|D, I ) ∝ σ−(N−1) exp
(
−X

2

)
is the χ2

ν distribution with ν = 2(N − 1).
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Summary

I We related the width of a multidimensional distribution — the Hessian
matrix H — to the covariance matrix via

[σ2]ij = [−H−1]ij

I Caution: the right way to get the uncertainty on a parameter from a
multidimensional distribution is to marginalize p(x , y , . . . |D, I )

I The wrong way to get the uncertainty on a parameter from such a
distribution is to fix parameters y , z , . . . at the optimal values and find
the uncertainty on x

I When marginalizing σ in a Gaussian distribution, we obtain the
Student-t distribution

I Whem marginalizing µ in a Gaussian distribution, we obtain the
χ2

2(N−1) distribution

Segev BenZvi (UR) PHY 403 34 / 35



References I

[1] “Student” (W.S. Gosset). “The Probable Error of a Mean”. In:
Biometrika 6 (1908), pp. 1–25.

Segev BenZvi (UR) PHY 403 35 / 35


	Review of Last Class
	Best Estimates and Reliability
	Properties of a Good Estimator

	Parameter Estimation in Multiple Dimensions
	Return of the Quadratic Approximation
	The Hessian Matrix and its Geometrical Interpretation
	Maximum of the Quadratic Form
	Covariance

	Multidimensional Estimators
	Gaussian Mean and Width
	Student-t Distribution
	2 Distribution


