
0.1. Electrostatics.

F =
n∑

i=1

qqi

|r− ri|3
(r− ri)

E(r) =
n∑

i=1

qi

|r− ri|3
(r− ri)

E(r) =
∫

d 3r ′ ρ(r′)
|r− r′|3 (r− r′)∫

S
ds•E(r) = 4πQenclosed

∇•E(r) = 4πρ(r )

E(r) =−∇Φ(r)

Φ(r) =
∫

d 3r ′ ρ(r′)
|r− r′|

Φ(r) =−
∫ r

∞
d l•E

W = q(Φ(rb)−Φ(ra))

Wdi scr ete =
1

2

∑
i , j ,i 6= j

qi q j

|ri − rj|

Wconti ni ous = 1

8π

∫
d 3r E2(r)

σ= 1

4π
n̂• (Er −El)

0.2. Multipole.

Φ(r) =
∞∑

n=1

qRn

r n+1 Pn(cos(θ)) r >> R

Φ(r) =
∞∑

n=1

qr n

Rn+1 Pn(cos(θ)) r << R

Φ(r) =
∫
ρ(r′)

∞∑
n=0

Pn(cos(γ))
r ′n

r n+1 d 3r ′

cos(γ) = cos(θ)cos(θ′)+ si n(θ)si n(θ′)cos(φ−φ′)

p = qd or
∫

d 3r rρ(r)

Φdi pol e (r) = p• r̂

r 2

Edi pol e (r) = 3(p• r̂)−p

r 3

τdi pol e = p x E(r)+ r x (p•∇)E(r)

Qi j =
∫

d 3r (3xi x j −δi j r 2)ρ(r)

Qi j =
n∑
l

ql (3ri l x j l −|rl |2δi j )

Φquadr apole (r) = 1

6

∑
i , j

Qi j
(3xi x j −δi j r 2)

r 5

Φdi pol e (r) =
∫

S

ds′ •P(r′)
|r− r′| −

∫
d 3r ′∇′ •P(r′)

|r− r′|
0.3. capacitors.

Q =CV

W = Q2

2C
= 1

2
CV 2

0.4. math.

|r− r′| =
√

r 2 + r ′2 −2r r ′cos(θ′)

∇
(

1

|r− r′|n
)
=− n

|r− r′|n+2 (r− r′) n >= 1

∇2
(

1

|r− r′|
)
=−4πδ3(r− r′)

Pl (x) = 1

2l l !

d l

d xl
(x2 −1)l

0.5. Coordiates.

x = r si n(θ)cos(φ) y = r si n(θ)si n(φ) z = r cos(θ)

θ ∈ [0,π] φ ∈ [0,2π]

x = s cos(φ) y = s si n(φ) z = z

d l = d xx̂+d y ŷ+d zẑ ;dτ= d x d y d z

d l = dr r̂+ r dθθ̂+ r si n(θ)φ̂ ;dτ= r 2si n(θ)dr dθ dφ

d l = d sŝ+ sdφφ̂+d zẑ ;dτ= s d s dφ d z

∇t = ∂t

∂x
x̂+ ∂t

∂y
ŷ+ ∂t

∂z
ẑ

∇t = ∂t

∂r
r̂+ 1

r

∂t

∂θ
θ̂+ 1

r si n(θ)

∂t

∂φ
φ̂

∇t = ∂t

∂s
ŝ+ 1

s

∂t

∂φ
φ̂+ ∂t

∂z
ẑ

∇•v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

∇•v = 1

r 2

∂

∂r
(r 2vr )+ 1

r si n(θ)

∂

∂θ
(si n(θ)vθ)+ 1

r si n(θ)

∂vφ
∂φ

∇•v = 1

s

∂

∂s
(svs )+ 1

s

∂vφ
∂φ

+ ∂vz

∂z

∇2t = ∂2t

∂x2 + ∂2t

∂y2 + ∂2t

∂z2

∇2t = 1

r 2

∂

∂r
(r 2 ∂t

∂r
)

1

r 2si n(θ)

∂

∂θ
(si n(θ)

∂t

∂θ
)+ 1

r 2si n2(θ)

∂2t

∂φ2

∇2t = 1

s

∂

∂s
(s
∂t

∂s
)+ 1

s2

∂2t

∂φ2 + ∂2t

∂z2

0.6. Solutions to Laplace Equation. Cartesian

X ′′(x) =α1 Y ′′(y) =α2 Z ′′(z) =α2 α1 +α2 +α3 = 0

Solve the equation which has some non-zero potential B.C.
last.

Φ(x, y, z) =
∞∑

m,n=1
Am,n,k (Xm(x)Yn(y)Zk (z))

Spherical (azimuthal symmetry)

Φ(r,θ,φ) =
∞∑

l=0
(Al r l +Bl r−(l+1))Pl (cos(θ))

Cylindrical (no z dependence)

Φ(r,φ) =C0+D0ln(r )+
∞∑

n=1
(Cnr n+Dnr−n)(Ancos(nφ)+Bn si n(nφ))

1



2

0.7. trig.

si n(u ± v) = si n(u)cos(v)± cos(u)si n(v)

cos(u ± v) = cos(u)cos(v)∓ si n(u)si n(v)

si n(2u) = 2si n(u)cos(u)

cos(2u) = cos2(u)− si n2(u) = 1−2si n2(u)

si n2(u) = 1− cos(2u)

2

cos2(u) = 1+ cos(2u)

2

si n(u)+ si n(v) = 2si n(
u + v

2
)cos(

u − v

2
)

si n(u)− si n(v) = 2cos(
u + v

2
)si n(

u − v

2
)

cos(u)+ cos(v) = 2cos(
u + v

2
)cos(

u − v

2
)

cos(u)− cos(v) =−2si n(
u + v

2
)si n(

u − v

2
)

si n(u)si n(v) = 1

2
(cos(u − v)− cos(u + v))

cos(u)cos(v) = 1

2
(cos(u − v)− cos(u + v))

si n(u)cos(v) = 1

2
(si n(u + v)− si n(u − v))

cos(u)si n(v) = 1

2
(si n(u + v)− si n(u − v))

2

1. FOUIER

∫ 1

−1
Pl (x)Pl ′ (x)d x =

∫ π

0
Pl (cos(θ))Pl ′ (cos(θ))si n(θ)dθ = 2

2l +1
∀l = l ′∫ 2π

0
cos(aφ)cos(bφ) = 0 ∀a 6= b and =π ∀ a = b∫ 2π

0
si n(aφ)si n(bφ) = 0 ∀a 6= b and =π ∀ a = b
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2. PROBLEM 1

A conducting sphere of radius R is connect to a battery which keeps it at a constant penitential φo , relative to a refer-
ence point at infinity (i.e. φ→ 0 as r→∞)
a) What is the total amount of charge that the batter must deposit on the conducting sphere, to keep it at potential φo ?
We know that conductors naturally arrange themselves to be kept at a constant potential. For this reason, there is not need
for any charge to be existing on the sphere, if φ = 0. If φ 6= 0 then there would be some charge needed. We can see this by
requiring the potential at the surface of the sphere be

φo(r = R,θ,φ) =φo = q1

R
which is that for a point charge, because if we are outside the sphere, it appears to be a point charge. Rearranging we see

q1 =φoR

This can be interpreted as a having a image charge at the center of the sphere.
b) A point charge q is places a distance d from the center of the sphere, where d>R. Now what is the total amount of
charge on the conducting sphere?
Well now we have the condition that V(r<R,θ,φ)=φo , but the point charge disrupts this. We can consider the image situation
again where we have a point charge q1 at the center of the sphere like before, but adding another charge q’ a distance b from
the center of the sphere, where b<R. The hope is that the image charge at the center will keep the sphere at the potential φ
while the second point charge at b will cancel the potential that the point charge creates. To determine this charge we write
the potential at any point outside the sphere

(1) Φ(r) = q1

|r| +
q ′

|r−bẑ| +
q

|r−d ẑ|

(2) Φ(r) = φoRp
r 2

+ q ′√
r 2 −b2 −2r bcos(θ)

+ q√
r 2 −d 2 −2r dcos(θ)

Now we require that theΦ(R) =φo ∀θ. This leads to an equation which must hold for all angle and you can solve for q’ and
b. Knowing q1 and q’ we know that the total charge on the sphere is

(3) Qtot al = q1 +q ′

What is the force of attracting between q and the conducting sphere? Is it attractive or repulsive? To find the force one
can simple use the image situation, finding the force q applies on qo and q’, and taking the sum of those two forces at the
total force on the conducting sphere.

(4) Fnet sphere = q

(
q1

|rqo − rq|3
(rqo − rq)+ q ′

|rq′ − rq|3
(rq′ − rq)

)
Now to know if the force is attractive or repulsive we must know what the initial potential φo is. Once we know this, we
could determine q1 which would then allow us to use the above equation to find the magnitude of the net force.
d) Suppose that a cavity exists in the interior of the conducting sphere, and a charge Q is inside the cavity. Now what is
the force on q outside?
I think this causes some issues, because my initial point charge was located at the center of the sphere, and now there is the
cavity, and the Q is placed on the location of my point charge. I think I could still use the image charge I place at the center.
So then I would just add one more term into the equation above, representing that of the Q.

3. PROBLEM 2

Two concentric spherical shells of radii R1 and R2, with R1 < R2, are fixed with the following values of the electrostatic
potential:

Φ(R1,θ,φ) =Φ1cos(θ)

Φ(R2,θ,φ) =Φ2

whereΦ1 andΦ2 are constants. LetΦ→∞.

a) Find the electrostatic potentialΦ(r,θ,φ) for r< R1 (inside the inner shell).
Clearly there is spherical symmetry so we will attempt to match the boundary conditions with the general solution

Φ(r,θ,φ) =
∞∑

l=0
(Al r l +Bl r−(l+1))Pl (cos(θ))

When we are inside the inner sphere, we have to be wary of r→0. We see that the we will require that Bl =0 in order to stop
this, and so we are left with

Φ(r,θ,φ) =
∞∑

l=0
(Al r l )Pl (cos(θ))
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Now we not that we will require that the potential have an overall θ dependence of cos(θ) for r=R1. This then suggests that
the only l term that survives our sum is l = 1 which corresponds to the legendar polynomial

P1(cos(θ)) = cos(θ)

Finally we are left with
Φ(r,θ) = A1 r cos(θ)

Now applying the condition that atΦ(R1,θ,φ) =Φ1cos(θ) we can solve for A1 and we get

Φ(r,θ,φ) = Φ1

R1
r cos(θ) ∀ r < R1

b) Find the electrostatic potentialΦ(r,θ,φ) for r> R2 (outside the inner shell).
Clearly we will use the same general solution

Φ(r,θ,φ) =
∞∑

l=0
(Al r l +Bl r−(l+1))Pl (cos(θ))

When we are inside the outside the sphere, we have to be wary of r→∞. We see that the we will require that Al =0 in order
to stop this, and so we are left with

Φ(r,θ,φ) =
∞∑

l=0
(Bl r−(l+1))Pl (cos(θ))

Now we not that we will require that the potential have no overall θ dependence at for r=R2. This then suggests that the only
l term that survives our sum is l = 0 which corresponds to the legendra polynomial

P0(cos(θ)) = 1

Finally we are left with

Φ(r,θ) = A0
1

r
Now applying the condition that atΦ(R1,θ,φ) =Φ2) we can solve for A0 and we get

Φ(r,θ,φ) =Φ2R2
1

r
∀ r > R2

c) Find the electrostatic potentialΦ(r,θ,φ) for R1 < r < R2 (between the shells).

Clearly we will use the same general solution

Φ(r,θ,φ) =
∞∑

l=0
(Al r l +Bl r−(l+1))Pl (cos(θ))

In-between the two spheres we do not have to worry about the r dependence going to infinity anywhere. We do know
thought that for r = R1 there should be a θ dependance of just cos(θ) and at r = R2 there should be no dependence. This
suggests that the only two l values that could possibly exist are l = 0,1 which corresponds to the legendra polynomials
discussed in a) and b). This leaves us with the general solution

Φ(r,θ,φ) = (A0r 0 +B0r−(0+1))P0(cos(θ))+ (A1r 1 +B1r−(1+1))P1(cos(θ))

Φ(r,θ,φ) = (A0 + B0

r
)+ (A1r + B1

r 2 )cos(θ)

Now we must ensure that at r=R2 there is no theta dependence to meat the boundary conditions,this then leads us to see
that for the seconds term’s coefficient must be zero when r=R2, that being

A1R2 + B1

R2
2

= 0

or

A1R2 =−B1

R2
2

so

A1 =−B1

R3
2

putting this back into our general solution

Φ(r,θ,φ) = (A0 + B0

r
)+ (−B1

R3
2

r + B1

r 2 )cos(θ)

Now we must ensure that at r=R1 there is a theta dependence to meat the boundary conditions,this then leads us to see that
for the first term must be zero when r=R1, that being

A0 + B0

R1
= 0
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leading to

A0 =−B0

R1

Our solution is now

Φ(r,θ,φ) = (−B0

R1
+ B0

r
)+ (−B1

R3
2

r + B1

r 2 )cos(θ)

Now we may use the boundary conditions again to see that

Φ(R1,θ,φ) = (−B0

R1
+ B0

R1
)+ (−B1

R3
2

R1 + B1

R2
1

)cos(θ) =Φ1cos(θ)

the first term is zero by construction in the previous steps, and so we know that

−B1

R3
2

R1 + B1

R2
1

=Φ1

By two steps of algebra

B1 =Φ1
R2

1 R3
2

R3
3 −R3

1

Our solution is now

Φ(r,θ,φ) = (−B0

R1
+ B0

r
)+Φ1

R2
1 R3

2

R3
3 −R3

1

(
1

r 2 − r

R3
2

)cos(θ)

Now applying the B.C. again

Φ(R2,θ,φ) = (−B0

R1
+ B0

R2
)+Φ1

R2
1 R3

2

R3
2 −R3

1

(
1

R2
2

− R2

R3
2

)cos(θ) =Φ2

the second term is zero by construction, and we find

−B0

R1
+ B0

R2
=Φ2

so

B0 =Φ2
R1R2

R1 −R2

and so

Φ(r,θ,φ) =Φ2
R1R2

R1 −R2
(

1

r
− 1

R1
)+Φ1

R2
1 R3

2

R3
2 −R3

1

(
1

r 2 − r

R3
2

)cos(θ)

c) Find the surface charge σ(θ,φ) on the shells at r=R1 and r=R2

Now we know that the surface charge density σ over a surface is given by

σ= 1

4π
n̂(Er −El)

and so we will need the electric field everywhere in space, which will require us take the negative gradient our solution for
Φ from a), b) and c). In the interest of time I will not perform the calculation explicitly, but I would take only the radial
comment of the gradient, because we will be dotting that with the normal direction, which is radially outward.

4. PROBLEM 3

A thin circular disk of radius R, lying in the xy plane and centered at the origin, has on it a fixed surface charge density
given by

σ(s,φ) = A s si n(2φ)

where r and φ are the usual polar coordinates in the xy plane.
Compute the electrostatic potential of this disk up through the electric quadruple term. Express your answer in spheri-
cal coordinates.
We will clearly be using cylindrical coordinates, and the equation

Φ(r) =
∫

d 3r ′ ρ(r′)
|r− r′|

Now we must determine what ρ((r ′)) must be, because we are given a surface charge density. We also note that the surface
is finite, and so we will expect to see a step function. We want the charge to exist only at z=0 and so we will have a δ(z). The
charge density is then given by

ρ(s′,φ′, z ′) =σ(s′,φ′, z ′)δ(z ′)θ(R − s′) = As′si n(2φ′)δ(z ′)θ(R − s′)

now we insert this into the potential equation and use the cylindrical d 3r ′

Φ(r) =
∫

s′ d s′ dφ′ d z ′As′si n(2φ′)δ(z ′)θ(R − s′)
|r− r′|
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What is the |r−r′| term though? Well we are seeing the potential at a location r, which is along the z axis, and we can choose to
center our coordinates at the center of the disc. This then says that the r=zẑ. Now the potential coming from arbitrary point
r′ is going to have , and so its vector form is r′=s’ŝ+z’ẑ. It should be noted here that all of the angle information is contained
in these two components, the ŝ contains an angular dependence. So when we take the magnitude of the difference we will
get

|r− r′| =
√

s′2 + (z − z ′)2

now we have

Φ(r) =
∫

d s′ dφ′ d z ′ As′2si n(2φ′)δ(z ′)θ(R − s′)√
s′2 + (z − z ′)2

integrating over the z variable will require that z’=0 leaving

Φ(r) =
∫

d s′ dφ′ As′2si n(2φ′)θ(R − s′)p
s′2 + z2

now we write the explicit limits

Φ(r) = A
∫ 2π

0
dφ′si n(2φ′)

∫ ∞

0
d s′

s′2θ(R − s′)p
s′2 + z2

Now we note that the φ integral is apparently zero, which would indicate that the potential is zero. That seems a little odd,
but I cannot find a mistake.

5. PROBLEM 4 (GRIFFITHS 3.36)

Two long straight wires, carrying opposite uniform line charges+/−λ, are situated on either side of a long conducting
cylinder. The cylinder (which carries no net charge) has a radius R, and the wires are a distance a from the axis. Find the
potential at a point r.
We first must indicate that there will be some polarization in the conductor, and positive charges are pulled to the left,
and negative are pulled to the right with magnitudes equal to +/−λ. This would indicate that one could create two image
charges, which are themselves infinite line charges parallel to those in the problem, located at a distance b from the origin
of the center cylinder.
One can now indicate the result obtained in class that for an infinite line charge the potential is given by

Φ(r) =−2λ l n(s)

With this we may simple say that the potential at some location r is

Φ(r) =−2λ(−ln(s1)+ ln(s2 − l n(s3)+ ln(s4))

where si is the distance to r from the point charges. To find these distances one just does a shift in coordinates.

6. PROBLEM 5 (GRIFFITHS 3.39)

A long cylindrical shell of radius R carries a uniform surface charge σ0 on the upper half and an opposite charge −σ0

on the lower half. Find the electric potential inside and outside the cylinder. There is clearly no charges in this problem
so we may solve Laplaces equation to find the potential. Also there is clearly going to be no z dependence and so we may
use our general solution to to Laplaces equation in cylindrical coordinates with no z dependence given by

Φ(r,φ) =C0 +D0ln(r )+
∞∑

n=1
(Cnr n +Dnr−n)(Ancos(nφ)+Bn si n(nφ))

We will begin with the inside. We require that as r→0 that Φ be finite, and so this allows us to determine that D0 = Dn = 0
because ln(r) and r−n tends to −∞ as r→0. This reduces our solution to

Φ(r,φ) =C0 +
∞∑

n=1
Cnr n(Ancos(nφ)+Bn si n(nφ))

Now for outside, coefficients indicated with a tic mark, we will require thatΦ=0 at ∞ and so C ′
o=D ′

0=C ′
n for this to occur (ln()

and r n tend to infinity for r →∞), and so we are left with

Φ(r,φ) =
∞∑

n=1
D ′

nr−n(A′
ncos(nφ)+B ′

n si n(nφ))

Now we will also require that the two potentials agree when r=R, and so that leads to
∞∑

n=1
D ′

nR−n(A′
ncos(nφ)+B ′

n si n(nφ)) =C0 +
∞∑

n=1
CnRn(Ancos(nφ)+Bn si n(nφ))

requiring that Co=0 and we get
∞∑

n=1
D ′

nR−n(A′
ncos(nφ)+B ′

n si n(nφ)) =
∞∑

n=1
CnRn(Ancos(nφ)+Bn si n(nφ))
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now for each k, this equality must hold and so we have two equations

E ′
nR−ncos(nφ) = FnRncos(nφ)

G ′
nR−n si n(nφ) = HnRn si n(nφ)

where we have absorbed all the constants into a single constant, canceling the angular dependence and solving we find

E ′
n = FnR2n

G ′
n = HnR2n

Now we also know that

σ= 1

4π
n̂• (Er −El) =

1

4π
(
∂Φi n

∂r
− ∂Φout

∂r
)

where we have used the fact that the normal direction is the radial component. This sets another restriction on our problem,
that being

∞∑
n=1

−nR−n−1(E ′
ncos(nφ)+G ′

n si n(nφ))−
∞∑

n=1
nRn−1(Fncos(nφ)+Hn si n(nφ)) = 4πσ(θ)

by taking the derivatives and applying our redefinition of coefficients. Now substituting our coefficients we just solved for
we find ∞∑

n=1
−nR−n−1(FnR2ncos(nφ)+HnR2n si n(nφ))−

∞∑
n=1

nRn−1(Fncos(nφ)+Hn si n(nφ)) = 4πσ(θ)

Now by combining these terms and simplifying
∞∑

n=1
2nRn−1(Fncos(nφ)+Hn si n(nφ)) = 4πσ(θ)

We note that sigma is a discontinuous function with period 2pi . At this point one must see that this is just a fourier series
for σ, whose coefficients can be used by the fourier trick, which is to multiply both sides of the equation by the integral of
cos(lφ) from 0 to 2π to find the coefficients of the cos(nφ) term, and to find the coefficnats of the si n(nφ) term we do the
same, but with si n(lφ). That is to say

∞∑
n=1

∫ 2π

0
cos(lφ)2nRn−1(Fncos(nφ)+Hn si n(nφ)) =

∫ 2π

0
cos(lφ) =

∫ π

0
cos(lφ)σ0 −

∫ 2π

π
cos(lφ)σ0

for the cos term, and
∞∑

n=1

∫ 2π

0
si n(lφ)2nRn−1(Fncos(nφ)+Hn si n(nφ)) =

∫ 2π

0
si n(lφ) =

∫ π

0
si n(lφ)σ0 −

∫ 2π

π
si n(lφ)σ0

for the sin term. This might look terrible, but there is some hope. We know that∫ 2π

0
si n(aφ)cos(bφ)dφ= 0

which sends two of the integrals to zero. The we also note that∫ 2π

0
cos(aφ)cos(bφ) = 0 ∀a 6= b and =π ∀ a = b∫ 2π

0
si n(aφ)si n(bφ) = 0 ∀a 6= b and =π ∀ a = b

which acts like a delta function, and turns all elements into the sum equal to zero except for l=n. This leaves us then with
the equations

2nlR l−1πFl =
∫ π

0
cos(lφ)σ0 −

∫ 2π

π
cos(lφ)σ0

for the cos term, and

2nlR l−1πHl =
∫ π

0
si n(lφ)σ0 −

∫ 2π

π
si n(lφ)σ0

Evaluating these integrals is trivial, the first is zero, and the second is σ0(2− cos(lπ))/l 2. This leads to Fi = 0 and

Hl =
σ0(2− cos(lπ))

2l 2R l−1π

leading to the condition that all even l coefficients are zero, and that odd ones are

Hl =
2σ0

l 2R l−1π

Now we can use this information go put these coefficients into our expansion to find final answers by using the expansion I
found way at the beginning. Note that you must go back to find the relationship between the primed coefficients (outside)
and the unprimed coefficients (inside) and use those where they are appropriate.
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7. PROBLEM 6 (GRIFFITHS 3.40)

A thin insulating rod, running from z=-a to z=+a, carries the indicated line charges. In each case, find the leading
term in the multipole expansion of the potential.
a) λ= kcos(πz

2a )
We will always start with the monopole, then dipole, then quadruple, because we are only seeking the leading term, and
these are decreasing in overall effectiveness, so this could save use time, rather than calculating the quadruple, then dipole,
then monopole moment.
The general form of the multipole expansion for distances far away is

Φ(r) =
∫
ρ(r′)

∞∑
n=0

Pn(cos(γ))
r ′n

r n+1 d 3r ′

Now one can write these linear charge densities as volume charge densities by putting two delta functions, one requiring
x=0 and one requiring y=0. We first calculate the monopole term which corresponds to

Φmonopol e =
∫
ρ(r′)P0(cos(γ))

r ′0

r 0+1 d 3r ′

which, using that P0 = 1 and plugging in our charge density, reduces to

Φmonopol e =
1

r

∫
kcos(

πz ′

2a
)δ(x ′)δ(y ′)d 3r ′

which becomes

Φmonopole =
1

r

∫ +a

−a
kcos(

πz ′

2a
)d z ′

doing this integral reduces to

Φmonopole =
4ak

πr

b) λ= kcos(πz
a )

Now all the same arguments hold as before but the integral becomes

Φmonopole =
1

r

∫ +a

−a
kcos(

πz ′

a
)d z ′

which is zero because this is over one period. Therefore we must look for the dipole moment which is the second term in
the sum which is

Φdi pol e =
∫
ρ(r′)P1(cos(γ))

r ′1

r 1+1 d 3r ′

now using that P1(cos(γ)) = cos(θ) because since we are not in spherical coordinates out thetas are not already caught up
together (WHY?), we see that

Φdi pol e =
cos(θ)

r 2

∫
kcos(

πz ′

a
)δ(x ′)δ(y ′)r ′d 3r ′

here we must not that the r’ that is in the definition, is the magnitude of the position vector pointing to the charge at r′, and
so for our charge this would simple be z’, because all the charge lies on the z axis, and so we get

Φdi pol e =
kcos(θ)

r 2

∫
z ′cos(

πz ′

a
)δ(x ′)δ(y ′)d 3r ′

integrating by parts one finds that

Φdi pol e (r,θ) = (
2a2k

π
)

1

r 2 cos(θ)

c) λ= kcos(πz/a)
The rest is just simple calculation, but one will find that the monopole, and dipole terms are zero, and the only one that
lasts is the third term in the series, and one will find

Φquadr apole (r,θ) = −4a3k

π2

(3cos2(θ)−1)

2r 3
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8. PROBLEM 7 GIFFITHS 3.28

in Ex. 3.9 we derived the exact potential for a spherical shell of radius R, which carries a surface charge σ= kcos(θ).
a) Calculate the dipole moment of this charge distribution. We know the dipole moment for a continuous distribution is

|p| =
∫

d 3r |r|ρ(r)

and we will deal with the direction later, but for now we will put in a d̂ to remember its a vector. We can rewrite our charge
as a volume charge density and plug into the integral

p = d̂
∫

r kcos(θ)δ(r −R) r 2 si n(θ)dr dθdφ

p = d̂k
∫

r 3 cos(θ)δ(r −R) si n(θ)dr dθdφ

the r integral will just make r=R because of the delta function, and the phi is just 2π.

p = d̂2πkR3
∫ π

0
si n(θ)dθ

which is an easy integral resulting in 2 and so we get

p = 4πkR3d̂

now one must determine the direction, by the symmetry of the geometry, it is clear that the direction is going to be in the
z direction. To see this draw where the charges are on the sphere at the extreme values of sin(θ) and you will see that the
majority of the charge will lie on the poles, like point charges.


