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Notes 39

The Quantized Electromagnetic Field

In these notes we will quantize the electromagnetic field, working from the classical Hamiltonian

description worked out in Notes 37. We will work primarily with the free field, and leave the

interaction with matter for later sets of notes. These notes continue with the notation established

in Notes 37.

We begin by applying Dirac’s quantization prescription to the classical field-matter system

discussed in Notes 37. At first we work with the free field only, whose classical Hamiltonian is

Hem =
1

2

∑

λ

ωk

(

P 2
λ +Q2

λ

)

(1)

[see Eq. (37.75)]. We reinterpret the variables Qλ, Pλ as operators satisfying the commutation

relations,

[Qλ, Pλ′ ] = ih̄ δλλ′ , [Qλ, Qλ′ ] = [Pλ, Pλ′ ] = 0, (2)

whereupon the Hamiltonian Hem also becomes an operator.

We see that the free field Hamiltonian is a sum of independent harmonic oscillators, one for

each mode of the field, so we introduce the usual Dirac algebraic formalism for harmonic oscillators.

First we define the annihilation and creation operators,

aλ =
Qλ + iPλ√

2h̄
,

a†λ =
Qλ − iPλ√

2h̄
, (3)

which are just like the classical formulas (37.100) except for the replacement of ∗ by †. These

operators satisfy the commutation relations,

[aλ, a
†
λ′ ] = δλλ′ , [aλ, aλ′ ] = [a†λ, a

†
λ′ ] = 0, (4)

as follows from Eq. (2). Next we write the free field Hamiltonian (1) in terms of the creation and

annihilation operators,

Hem =
∑

λ

h̄ωk

(

a†λaλ +
1

2

)

, (5)

where the 1/2 represents the usual zero point energy of a harmonic oscillator. We also define the

usual number operator,

Nλ = a†λaλ. (6)

What are the ket spaces upon which these operators act? It is possible to introduce a Hilbert

space of wave functions ψ(Qλ) for each mode of the field, but in practice this is never done because



2 Notes 39: Quantized Electromagnetic Field

the algebraic relations among the operators and energy eigenkets are all that is ever needed. We

will denote the energy eigenkets of a single oscillator λ by |nλ〉, where nλ = 0, 1, . . . is the usual

quantum number of a harmonic oscillator. These kets span a space Eλ associated with the single

mode, which is the space upon which the operators Qλ, Pλ (for the given value of λ) act. The ket

space for the entire electromagnetic field is the tensor product over the modes,

Eem =
∏

λ

⊗Eλ. (7)

An arbitrary (pure) quantum state of the electromagnetic field is a ket in the space Eem. The energy

eigenstates of Hem are specified by a list of quantum numbers {nλ} = {. . . nλ . . .}, one for each mode

of the field; the eigenstates themselves will be written in various ways,

|{nλ}〉 = | . . . nλ . . .〉 =
∏

λ

⊗|nλ〉. (8)

The creation/annihilation operators act on these eigenstates in the usual way,

aλ| . . . nλ . . .〉 =
√
nλ | . . . nλ − 1 . . .〉,

a†λ| . . . nλ . . .〉 =
√
nλ + 1 | . . . nλ + 1 . . .〉. (9)

The ground state of the free field is the state with all nλ = 0, which we denote simply by |0〉,

|0〉 = | . . . 0 . . .〉. (10)

We call |0〉 the vacuum state. It is not to be confused with the zero ket; the vacuum is a state of

unit norm, 〈0|0〉 = 1. The vacuum ket is annihilated by any annihilation operator and the vacuum

bra is annihilated by any creation operator,

aλ|0〉 = 0, 〈0|a†λ = 0. (11)

On the other hand, by applying creation operators to the vacuum, we can build up a state with any

number of photons. This gives

| . . . nλ . . .〉 =
1

√
∏

λ nλ!

∏

λ

(a†λ)nλ |0〉, (12)

which is a generalization of Eq. (8.38).

Since the vacuum is the state of minimum energy of the electromagnetic field, we interpret it

physically as a state in which there are no photons. Unfortunately, according to Eq. (5), the energy

of the vacuum is

〈0|Hem|0〉 =
∑

λ

h̄ωk

2
= ∞, (13)

which is the infinite sum of the zero point energies of all the oscillators that make up the field. In the

case of mechanical harmonic oscillators with a finite number of degrees of freedom, the zero point
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energy is real and physically meaningful, but here in the case of the electromagnetic field it is an

embarrassment that causes difficulties of physical interpretation.

The zero point energy is just one of several classes of infinities that arise in quantum field

theory, and it is one of the easier ones to rationalize away. In one approach, we simply argue

that the definition of the origin of energy is a matter of convention anyway, that it does not affect

the equations of motion (either the classical Hamilton equations or the Heisenberg equations in

quantum mechanics), and that we ought to be able to throw the zero point energy away since it is

just a constant, albeit an infinite one. In another approach, we can argue that the zero point energy

is connected with the ambiguities in the quantization of classical Hamiltonians containing nontrivial

orderings of q’s and p’s. It is true that the Hamiltonian (1) does not have any q-p products, but

that is true only in the (Qλ, Pλ) system of canonical coordinates. In another coordinate system

there would be nontrivial products. For example, classically there is no difference between a∗λaλ and

aλa
∗
λ, but of course in quantum mechanics a†λaλ = aλa

†
λ − 1. Therefore if we decided to quantize

by replacing a’s and a∗’s by a’s and a†’s, the quantum Hamiltonian would depend on the ordering

of the classical a’s and a∗’s. By using different orderings, we could get the Hamiltonian (5), or

one having twice the zero point energy, or one with no zero point energy at all. Without further

rationalization, we will choose the latter possibility, so that the Hamiltonian becomes

Hem =
∑

λ

h̄ωk a
†
λaλ, (14)

and so that the energy of the state | . . . nλ . . .〉 is given by

Hem| . . . nλ . . .〉 =
(

∑

λ

nλ h̄ωk

)

| . . . nλ . . .〉, (15)

or,

〈. . . nλ . . .|Hem|. . . nλ . . .〉 =
∑

λ

nλh̄ωk. (16)

In particular, the energy of the vacuum is zero.

We saw classically that the normal variable aλ is essentially the amplitude of a plane electro-

magnetic wave of mode λ = (k, µ). Thus, the classical quantity |aλ|2 = a∗λaλ is proportional to the

energy in the mode. But in quantum mechanics, we are finding that the energy in mode λ, which is

proportional to the expectation value of a†λaλ, is quantized in units of h̄ωk. This of course is exactly

as in the original quantum hypothesis developed by Planck and Einstein, and we are led to interpret

a state with quantum number nλ as one containing nλ photons, each with energy h̄ωk.

This is the beginning of the particle interpretation of the quantum states that belong to the ket

space Eem. In the following discussion we will gradually flesh out this interpretation by examining

successively the momentum, angular momentum, and spin and statistics of these particles. In

the process, we will see that the formalism we have developed for the quantization of the field

incorporates a quantum mechanical description of a system in which particles can be created or

destroyed, so that the number of particles is variable. The particles in question are photons, which
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can be created in arbitrary numbers at arbitrarily low energies, because they are massless. But the

formalism we will develop serves as a paradigm for higher energy (relativistic) processes in which

massive particles can be created or destroyed.

We turn now to the momentum of the photons. To investigate the momentum in the quantum

theory, we must transcribe the classical momentum given by Eqs. (38.139) or (38.149) into a quantum

operator. For the present we are working with the free field only, for which the matter terms can be

dropped and for which E = E⊥. Therefore the momentum of interest is Ptrans, which is expressed

in terms of the fields E⊥ and B by

Ptrans =
1

4πc

∫

d3rE⊥×B (17)

[see Eq. (38.140)]. Classically, the fields are functions of the a’s and a∗’s; our strategy will be to

transcribe these to a’s and a†’s to get a quantum operator.

We begin with the fields A, E⊥ and B, which are expressed classically in terms of a’s and a∗’s

by Eqs. (38.128)–(38.130). When we transcribe these over to quantum mechanics, we obtain the

operators,

A(r) =

√

2πh̄c2

V

∑

λ

1√
ωk

(

ǫλaλe
ik·r + ǫ

∗
λa

†
λe

−ik·r
)

, (18)

E⊥(r) =
1

c

√

2πh̄c2

V

∑

λ

√
ωk

(

iǫλaλe
ik·r − iǫ∗λa†λe−ik·r

)

, (19)

B(r) =

√

2πh̄c2

V

∑

λ

1√
ωk

[

i(k×ǫλ)aλe
ik·r − i(k×ǫ

∗
λ)a†λe

−ik·r
]

. (20)

Just as in classical field theory, the field point r is regarded merely as a parameter of the fields, but

now the fields themselves are operators, since the right hand sides are linear combinations of the

operators aλ and a†λ. Thus, A(r), E⊥(r), and B(r) are now seen as fields of operators that act on the

ket space of the quantized system; they are our first examples of quantum fields. We note that just

as the classical fields are real, these quantum fields are Hermitian. As usual in quantum mechanics,

Hermitian operators correspond to measurements that can be made on a physical system, and such

measurements are subject to statistical fluctuations and the constraints of the uncertainty principle.

We will see that such features are present in the measurement of the quantized electromagnetic

fields.

Let us return to the field momentum Ptrans in Eq. (17), which is the classical expression. The

classical fields E⊥ and B that appear in the integrand can be expanded as linear combinations of

a’s and a∗’s, according to Eqs. (38.129) and (38.130). But when we replace the a’s and a∗’s by a’s

and a†’s in order to obtain the quantum expression for Ptrans, there arises the question of the proper

ordering of the classical a’s and a∗’s. We could simply follow the ordering given by E⊥×B, but this

as it turns out leads to an infinite zero point momentum, much like the zero point energy in Eq. (5).
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We would like to have 〈0|Ptrans|0〉 = 0, so the momentum of the vacuum would vanish. We can

accomplish this if we order the a’s and a∗’s in the classical formula by placing all a∗’s to the left

of all a’s, and then replacing the a’s and a∗’s by a’s and a†’s. Then when we compute the vacuum

expectation value of Ptrans, there will always be an annihilation operator next to the vacuum ket

|0〉, or a creation operator next to the vacuum bra 〈0|, and the result will vanish.

The following notation is convenient for this purpose. If we have any polynomial in a’s and

a†’s, we will define the normal ordered polynomial as the rearrangement obtained by moving all a†’s

to the left and all a’s to the right. In this process, we discard any commutators of a’s and a†’s

(effectively, we work with the classical expression, then replace a’s and a∗’s by a’s and a†’s.) If Q is

such a polynomial, we denote its normal ordered rearrangement by :Q:. For example, we can write

the quantum Hamiltonian of the free electromagnetic field as

Hem =
1

8π

∫

d3r :E2
⊥ +B2:, (21)

and the momentum of the free field is

Ptrans =
1

4πc

∫

d3r :E⊥×B:. (22)

Let us now express the free field momentum Ptrans in terms of a’s and a†’s. We substitute

Eqs. (19) and (20) into Eq. (22), and obtain

Ptrans =
1

4πc

∫

d3r
1

c

2πh̄c2

V

∑

λλ′

√

ω

ω′
:
[

iǫλaλe
ik·r − iǫ∗λa†λe−ik·r

]

×
[

i(k′×ǫλ′)aλ′eik′·r − i(k′×ǫ
∗
λ′)a

†
λ′e

−ik′·r
]

:, (23)

where λ = (kµ), λ′ = (k′µ′), and ω = ωk, ω′ = ωk′ . There are four major terms in this expression.

Let us first consider the term involving the product aλaλ′ :

aλaλ′ -term = − h̄

2V

∫

d3r
∑

kk′

∑

µµ′

√

ω

ω′

[

ǫkµ×(k′×ǫk′µ′)
]

akµak′µ′ ei(k+k
′)·r

= +
h̄

2

∑

kµµ′

[ǫkµ×(k×ǫ−k,µ′)] akµa−k,µ′ , (24)

where we have used
1

V

∫

d3r ei(k+k
′)·r = δk,−k′. (25)

Note that after setting k′ = −k, we have ω′ = ω. Next we expand out the double cross product and

use Eq. (38.75b), so that Eq. (24) becomes

aλaλ′ -term =
h̄

2

∑

kµµ′

k(ǫkµ · ǫ−k,µ′) akµa−k,µ′ = − h̄
2

∑

kµµ′

k(ǫ−k,µ′ · ǫkµ) a−k,µ′akµ, (26)

where in the second equality we have replaced the dummy index of summation k by −k, and swapped

the indices µ, µ′. However, since [akµ, a−k,µ] = 0, the whole expression is equal to the negative of
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itself, and therefore vanishes. In a similar manner we find that the term in Eq. (23) involving a†λa
†
λ′

also vanishes.

This leaves the terms involving aλa
†
λ′ and a†λaλ′ , of which the first becomes a†λ′aλ upon normal

ordering. By an analysis similar to that above, this term is

a†λ′aλ-term =
h̄

2V

∫

d3r
∑

kk′

∑

µµ′

√

ω

ω′

[

ǫkµ×(k′×ǫ
∗
k′µ′)

]

a†
k′µ′akµ e

i(k−k
′)·r

=
h̄

2

∑

kµµ′

ǫkµ×(k×ǫ
∗
kµ′) a

†
kµ′akµ

=
h̄

2

∑

kµ

k a†
kµakµ =

1

2

∑

λ

h̄k a†λaλ, (27)

where we have used Eq. (38.75a) in expanding the double cross product. Similarly, the a†λaλ′ term

gives the same answer, and doubles it. Altogether, we find

Ptrans =
∑

λ

h̄k a†λaλ =
∑

λ

h̄kNλ, (28)

where Nλ is the number operator.

The momentum operator Ptrans commutes with the Hamiltonian Hem, and is diagonal in the

basis |{nλ}〉 of energy eigenkets. Explicitly, we have

Ptrans| . . . nλ . . .〉 =
(

∑

λ

nλ h̄k
)

| . . . nλ . . .〉. (29)

We see that, just as the energy of a mode of the field is quantized in integer multiples of h̄ωk, the

momentum in the mode is quantized in integer multiples of h̄k. We interpret this by saying that

the photon is a particle of energy h̄ωk and momentum h̄k, which is completely in accordance with

the dispersion relation ω = ck for a light wave, as well as the relativistic energy-momentum relation

E = cp for a massless particle.

We turn now to the angular momentum of the photon. This is a somewhat complicated subject,

and we can give only a partial analysis here. The principal conclusions from a complete analysis

of this subject are that the photon is a particle of spin 1, but that of the three helicity states

(µ = 0,±1) that would be present for a massive particle, the photon has only two (µ = ±1). The

latter restriction is equivalent to the transversality condition imposed on the radiation fields, and it

is a general feature of massless particles: as first shown by Wigner, massless particles of spin s only

possess the stretched helicity states µ = ±s.
For the analysis of the angular momentum of the field, a particular choice of polarization vectors

is convenient. These are essentially circular polarization vectors, with a particular phase convention.

In general, polarization vectors are two orthonormal, possibly complex unit vectors that span the

plane perpendicular to k. These vectors are, of course, functions of k, or, more precisely, of the

direction k̂. A convenient way to construct such vectors is to start with two constant, orthonormal
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unit vectors that span the x-y plane, so that taken with ẑ they form an orthonormal triad. Then

the vectors of this triad are rotated by a rotation matrix R that is required to map the ẑ direction

into the k̂ direction. We write R(k̂) for this matrix; it is a function of k̂, and by its definition we

have

R(k̂)ẑ = k̂. (30)

Such a matrix is easy to construct; if the spherical angles of k̂ are (θ, φ), then we will take

R(k̂) = Rz(φ)Ry(θ) = R(φ, θ, 0), (31)

where the final expression is in terms of Euler angles. When the two vectors of the triad that span

the x-y plane are rotated by R(k̂), they become two vectors that span the plane perpendicular to k̂,

since the orthonormality conditions are preserved by the rotation.

In particular, suppose we take the original triad to be the spherical basis of unit vectors,

introduced in Eq. (18.28), which we reproduce here:

ê1 = − x̂ + iŷ√
2

,

ê0 = ẑ,

ê−1 =
x̂ − iŷ√

2
. (32)

For light propagating in the z-direction, the vector ê1 corresponds to left circular polarization (the

electric field vector rotates counterclockwise in the x-y plane), and the vector ê−1 corresponds to

right circular polarization light (the electric vector rotates clockwise). These are the conventions

used by Jackson and Born and Wolf and most people in optics, but they are the opposite to what

particle physicists would have preferred if they could have established the convention. Apparently

for this reason, Sakurai has reversed the conventions. I think it is less confusing to stay with the

standard terminology of optics. We can also invent new terminology; as we will see, left circular

polarization can also be called the +1 state of helicity, and right circular polarization the state of

−1 helicity. Helicity will be explained more fully below.

Given the spherical basis (32), we can define a rotated triad by

ǫkµ = R(k̂)êµ, (33)

so that ǫk0 = k̂, and ǫkµ for µ = ±1 span the plane perpendicular to k̂ and represent states of

circular polarization for waves propagating in the k̂ direction. We will henceforth take the index

µ to run over ±1 for these polarization vectors (not 1 and 2, as in Notes 38). In addition to the

orthonormality and completeness relations (38.75), one can show that these vectors also satisfy the

relation ǫkµ = ǫ
∗
−k,µ and the relations

ǫkµ = (−1)µ
ǫ
∗
k,−µ, (34)

and

ǫ
∗
kµ×ǫkµ = iµk̂, (35)
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which are valid for µ = 0,±1. These relations are easily proved because they are just rotated versions

of the analogous relations for the constant vectors êµ.

Let us return to the angular momentum of the system. The classical angular momentum of

the matter-field system is given by Eqs. (38.155)–(38.161). We specialize this to the case of the free

field, for which

J = Jtrans = L + S =
1

4πc

∫

d3r r×(E⊥×B). (36)

We will transcribe the expressions for L and S over into quantum operators. We begin with

the spin [see Eq. (38.157)], which we write as a normal ordered operator,

S = − 1

4πc

∫

d3r :A×E⊥:

= − h̄

2V

∫

d3r
∑

λλ′

√

ω′

ω
:
[

ǫλaλe
ik·r + ǫ

∗
λa

†
λe

−ik·r
]

×
[

iǫλ′aλ′eik′·r − iǫ∗λ′a
†
λ′e

−ik′·r
]

:, (37)

and then we evaluate terms as we did previously for the momentum Ptrans. As before, we find

that the terms involving aλaλ′ and a†λa
†
λ′ vanish, while the remaining two cross terms give equal

contributions. The answer can be written in the form,

S = ih̄
∑

kµµ′

ǫkµ×ǫ
∗
kµ′ a

†
kµ′akµ, (38)

which is valid for any choice of polarization vectors. Of course, the µ sum only runs over the

transverse polarizations. If, however, we make the choice (33), then the cross product vanishes

unless µ = µ′, and we can use the identity (35) to write

S =
∑

kµ

h̄k̂µa†
kµakµ =

∑

k

h̄k̂(a†
k+ak+ − a†

k−ak−) =
∑

k

h̄k̂(Nk+ −Nk−), (39)

where Nk± are the number operators for µ = ±1.

Just like the energy Hem and momentum Ptrans, the spin S can be expressed purely in terms of

number operators, so it commutes with the free-field Hamiltonian and is diagonal in the occupation

number basis | . . . nλ . . .〉. We see that photons of µ = ±1 contribute to the angular momentum

of the system an amount that is h̄ times ±1 in the direction of the propagation. As we say, such

photons have helicity of ±1.

Next we turn to the orbital angular momentum of the field. Here we cannot use box normal-

ization any longer, because boxes are not invariant under rotations. To see the complete invariance

of the electromagnetic matter-field system under rotations, it is necessary to take the limit V → ∞,

which of course means that the lattice in k-space is replaced by a continuum of k-values. We recall

the rules (38.69)–(38.71) given earlier for the limit V → ∞, and we begin by applying them to the

Fourier expansions (18)–(20) for the fields A, E⊥, and B. First we change notation,

ǫkµ → ǫµ(k), (40)
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which is merely a way of reminding ourselves that k is now a continuous variable. Next we note

that the annihilation operator akµ is like a Fourier coefficient in k-space of the field A(r), so we use

the rule (38.70) for it, and write

akµ → (2π)3/2

√
V

aµ(k). (41)

With these changes, the quantum fields become

A(r) =
√

2πh̄c2
∫

d3k

(2π)3/2

1√
ωk

∑

µ

[

ǫµ(k)aµ(k)eik·r + ǫ
∗
µ(k)a†µ(k)e−ik·r

]

, (42)

E⊥(r) =
1

c

√
2πh̄c2

∫

d3k

(2π)3/2

√
ωk

×
∑

µ

[

iǫµ(k)aµ(k)eik·r − iǫ∗µ(k)a†µ(k)e−ik·r
]

, (43)

B(r) =
√

2πh̄c2
∫

d3k

(2π)3/2

1√
ωk

×
∑

µ

{

i[k×ǫµ(k)]aµ(k)eik·r − i[k×ǫ
∗
µ(k)]a†µ(k)e−ik·r

}

. (44)

The commutation relations (4) also change; now we have

[aµ(k), a†µ′ (k
′)] = δµµ′ δ(k − k′), [aµ(k), aµ′(k′)] = [a†µ(k), a†µ′ (k

′)] = 0. (45)

When we go over to the continuum limit (V → ∞), the operators aµ(k) and a†µ(k) become

singular, and have physical meaning only when used in appropriate expressions that are integrated

over k-space. It is easy to see why. When we were working in a box, a single mode was represented

by a given plane light wave that was periodic in the box. When we quantize this mode and place,

say, one photon in it, we have energy h̄ω in volume V , so the amplitude of the wave (speaking in

classical terms) is finite, and the energy density is nonzero. When we go over to the continuum limit,

however, the volume becomes infinite so the energy density corresponding to any finite number of

photons in a single mode is zero. The energy of a single photon is still h̄ω, but if it is placed into

a single mode, the energy is spread over all of space. Therefore if we want to obtain a localized

distribution of energy, we must form linear combinations of different photon states with different k

values. This will in practice always turn into some kind of integral over k-space. It is in this sense

that the Dirac delta function occurring in the commutator (45) should be interpreted; of course,

delta functions only have meaning when used under integral signs.

There is one more change of notation that is useful when discussing the angular momentum of

the field. We define vector fields of annihilation/creation operators,

a(k) =
∑

µ

ǫµ(k)aµ(k),

a†(k) =
∑

µ

ǫ
∗
µ(k)a†µ(k), (46)
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which satisfy the commutation relations,

[ai(k), a†j(k
′)] = Tij(k) δ(k − k′),

[ai(k), aj(k
′)] = [a†i (k), a†j(k

′)] = 0, (47)

where i, j refer to the Cartesian components and where Tij(k) is the transverse projection tensor in

k-space,

Tij(k) = δij −
kikj

k2
. (48)

Fields a(k) and a†(k) are transverse quantum fields in k-space.

For reference, we now write out the energy, momentum and spin of the field in the new (con-

tinuum) language:

Hem =

∫

d3k h̄ωk

∑

µ

a†µ(k)aµ(k) =

∫

d3k h̄ωk a†(k) · a(k), (49)

Ptrans =

∫

d3k h̄k
∑

µ

a†µ(k)aµ(k) =

∫

d3k h̄ka†(k) · a(k), (50)

S =

∫

d3k h̄k̂
∑

µ

µa†µ(k)aµ(k) = −ih̄
∫

d3ka†(k)×a(k). (51)

In the first expression for S, we must use the circular or helicity basis of polarization vectors (33),

but any polarization vectors can be used in the other expressions.

We return now to the orbital angular momentum of the field. We take the classical expression

(38.156) and transcribe it into a normal ordered operator,

L =
1

4πc

∫

d3r r×(:∇A ·E⊥:), (52)

and then we express the integrand in terms of creation and annihilation operators. After simplifi-

cation, we find an expression for the i-th component of the orbital angular momentum operator of

the free field,

Li =
ih̄

2
ǫijℓ

∫

d3k kℓ

[

a†(k) · ∂a(k)

∂kj
− ∂a†(k)

∂kj
· a(k)

]

. (53)

We see that the orbital angular momentum of the field is not expressed in terms of number op-

erators, nor is it diagonal in the occupation number | . . . nλ . . .〉 basis. This should not be surprising;

the modes we have been dealing with are plane waves at the classical level, and we know that planes

waves in the quantum mechanics of a single particle are not generally angular momentum eigen-

states. Instead, the nonrelativistic free particle eigenfunctions that are also eigenfunctions of L2 and

Lz are spherical Bessel functions times Yℓm’s, times a spinor if the particle has spin. Something like

this (but more complicated) is going on here with photon states; it is possible to organize photon

states as eigenstates of the angular momentum operators, but our plane wave formalism developed

so far has not done this. The subject of the angular momentum of the photon is somewhat lengthy,

so we will not go into it further at this point, but some additional remarks will be made below.
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Instead, we will discuss a striking aspect of the quantized field formalism we are developing,

namely the fact that it describes the quantum mechanics of a system in which the number of particles

is variable. We are accustomed to describing the state of a single particle system of spin s by a

wave function ψ(r,m); this is in the (r, Sz)-representation, so m = −s, . . . ,+s. Similarly, we are

accustomed to describing the state of a two-particle system by a wave function ψ(r1,m1; r2,m2),

which if the particles are identical must obey the symmetry requirement,

ψ(r1,m1; r2,m2) = ±ψ(r2,m2; r1,m1) (54)

(+ for bosons, − for fermions). But in the quantized electromagnetic field, we describe photon states

by the kets | . . . nλ . . .〉, in which the number of photons in each mode is indicated by the integers

nλ. These occupation numbers can take on any value nλ = 0, 1, 2, . . ., so the ket space Eem, which is

spanned by the occupation number basis kets | . . . nλ . . .〉, includes states for any number of photons.

It also includes states that are linear combinations of states of different numbers of photons.

What is the relation between the occupation number basis states | . . . nλ . . .〉 and the usual wave

functions we are familiar with? Let us first consider the kets in Eem that contain no photons. The

only state with no photons is the vacuum |0〉, which spans a 1-dimensional subspace of Eem.

Next we consider states of a single photon. A particular single photon state can be created by

applying a creation operator to the vacuum, which gives a†µ(k)|0〉 for some µ and k. But this is

not the most general single photon state, which would be a linear combination of states of the form

a†µ(k)|0〉, with different values of µ and k. We write such a state in the form,

|Ψ1〉 =

∫

d3k
∑

µ

f(k, µ) a†µ(k)|0〉, (55)

where the 1-subscript on Ψ simply means that we have a single-photon state, and where the function

f(k, µ) specifies the linear combination. The function f(k, µ) is an arbitrary complex function, apart

from the condition
∫

d3k
∑

µ=±1

|f(k, µ)|2 = 1, (56)

which is required to make 〈Ψ1|Ψ1〉 = 1. Conversely, given a single photon state |Ψ1〉, we can solve

for f by using

f(k, µ) = 〈0|aµ(k)|Ψ1〉, (57)

as follows from the commutation relations (45). We see that (normalized) single particle photon

states in Eem can be placed into one-to-one correspondence with (normalized) wave functions f(k, µ),

where µ = ±1. We will call f(k, µ) the “wave function of the photon.”

Similarly, we can create two-photon states by applying two creation operators to the vacuum,

say, a†µ(k)a†µ′ (k′)|0〉. An arbitrary two-photon state is a linear combination of such states,

|Ψ2〉 =

∫

d3k d3k′
∑

µµ′

f(k, µ;k′, µ′) a†µ(k)a†µ′ (k
′)|0〉. (58)
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We will interpret f(k, µ;k′, µ′) as the wave function of the two-photon state. However, since the

two creation operators in Eq. (58) commute with one another, they could be applied in the opposite

order, with no change to the state |Ψ2〉. Therefore the function f might as well be symmetric in the

arguments (k, µ) and (k′, µ′),

f(k, µ;k′, µ′) = f(k′, µ′;k, µ), (59)

because any antisymmetric part would not contribute to |Ψ2〉. As a result, we reach the important

conclusion that photons are bosons.

When we work with wave functions for identical particles, it is possible to write down a wave

function that is not properly symmetrized (or antisymmetrized), even though such functions have no

physical meaning. But when we specify two-photon states by means of creation operators applied to

the vacuum, the states are always properly symmetrized, since the symmetrization is automatically

built into the commutation relations of the creation operators. The same holds for states of any

number of photons (n > 2).

There is a similar formalism that works for fermions, and which automatically gives properly

antisymmetrized states. This formalism also uses creation and annihilation operators, but the oper-

ators are required to satisfy anticommutation relations, instead of commutation relations. We will

consider fermion fields later in the course.

Let us denote the subspace of Eem spanned by the vacuum state by E0, the subspace spanned

by all one-photon states by E1, the subspace spanned by all two-photon states by E2, etc. Then we

have

Eem = E0 ⊕ E1 ⊕ E2 ⊕ . . . . (60)

Operators that act on Eem that have matrix elements connecting the different subspaces En are

capable of changing the number of photons; such operators include the creation and annihilation

operators aµ(k) and a†µ(k), as well as the field operators A(r), etc. The free field Hamiltonian

Hem does not change the number of photons, but the when the matter Hamiltonian is included,

the number of photons can change. Thus, in interactions with matter, the number of photons can

increase or decrease; this is otherwise just the process of emission and absorption of radiation by

matter, which we will consider in detail later.

The ket space Eem is an example of a Fock space. There is a technical mathematical distinction

between a Fock space and a Hilbert space that need not concern us;† we will simply use these terms

for linguistic relief, with a Fock space designating a ket space incorporating a variable number of

particles, such as Eem, and with a Hilbert space designating the ket space with a fixed number of

particles. For example, the wave functions f(k, µ) introduced in Eq. (55) belong to a Hilbert space

of wave functions, while the ket |Ψ1〉 in that equation belongs to the Fock space Eem.

In the case of a massive, nonrelativistic particle, the most popular form of the wave function

is probably ψ(r,m) = 〈r,m|ψ〉, which is in the (r, Sz)-representation. Of course, we are free to use

† A Hilbert space has a countable basis; a Fock space does not.
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other representations if we want to. Now we are calling f(k, µ) the wave function of the photon, but

what is the representation? It turns out that it is the (k,Ω)-representation, where

Ω = k̂ · S (61)

is the helicity operator. Also, it turns out that the wave function f(k, µ) represents the state of a

spin-1 particle.

In the following discussion it will be important to distinguish between the Fock space Eem, the

ket space for the electromagnetic field, and the Hilbert space of wave functions of a single particle.

Let us begin with the Hilbert space of a massive particle of spin s, which can be identified with

the space of wave functions ψ(r,m). The vector r is the usual position operator that acts on this

space, and the vector k = p/h̄ is proportional to the usual momentum operator. For example, in

the (r, Sz)-representation, r is represented by multiplication by r, and k is represented by −i∇. The

operators r and k, which act on the Hilbert space of a single particle, are not to be confused with

the r and k which occur in the theory of the quantized field, which are merely labels of the degrees

of freedom of the field, and are not operators. In fact, there is no position operator for the field,

and although the field does have a momentum operator [see Eq. (50)], it is quite different from the

operator k that acts on the single-particle Hilbert space. Similarly, we have the usual orbital angular

momentum L = r×p and the usual spin S that act on the Hilbert space of a single particle, but

these are not to be confused with the orbital and spin angular momentum operators for the field [see

Eqs. (51) and (53)], which act on Eem. Finally, the helicity operator Ω = k̂ · S acts on the Hilbert

space of a single particle; it is not a Fock space operator.

The helicity operator is just the component of the spin in a certain direction (the direction

of propagation), so its eigenvalue µ is like a magnetic quantum number, and takes on the values

µ = −s, . . . ,+s. At least, this is the case for a particle of nonzero mass, the only case we have

considered so far in this course. But it was shown by Wigner in 1939 that massless particles only

have the stretched helicity states, µ = ±s. For example, the photon, with s = 1, only possesses the

µ = ±1 states, and the graviton, another massless particle with s = 2, only possesses the µ = ±2

states. As we have seen, the exclusion of the µ = 0 states for the photon is equivalent to the

transversality condition for the fields. But if photons had a nonzero mass, then they would also

possess longitudinal polarizations, and all three helicity states would be allowed. Wigner’s result

can be understood more fully in terms of Lorentz transformations; if a particle has a nonzero mass,

then it is always possible to go to the rest frame of the particle, whereupon ordinary spatial rotations

can rotate the spin into any direction. But a massless particle has no rest frame.

In the case of a photon, the helicity states µ = 0 which would be allowed for a massive particle

are simply not present. This means that the physical Hilbert space of wave functions for a photon

is only a subspace of the space that would be allowed for a massive particle, and that any (Hilbert

space) operator that has nonvanishing matrix elements between the µ = ±1 subspaces and the µ = 0

subspace must be regarded as nonphysical for a photon, since it would map a physically meaningful

photon state into a physically meaningless state. As a result, we can classify the operators that act
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on the state of a massive particle into those that are or are not meaningful when the mass is set to

zero. Certainly any operator that commutes with helicity will not mix the eigenspaces of helicity,

and so is meaningful when acting on photon states. This includes helicity Ω itself, as well as the

momentum k. However, the position operator r does not commute with helicity (because it does not

commute with k), and is not meaningful for a photon. Thus, the photon does not have a position

operator. An eigenfunction of position is a δ-function, but such a function is not transverse. If we

project out the transverse part, we get the transverse delta-function (38.48), which is not localized.

Nor does the photon have an orbital angular momentum operator, because the (Hilbert space)

angular momentum L = r×p, which is defined for a massive particle, does not commute with helicity

k̂ ·S (L generates spatial rotations, which rotate the k̂ part of the dot product, but leave the S part

alone), and it mixes the µ = ±1 and µ = 0 eigenspaces of helicity. Similarly, the photon does not

have a spin operator, because [S,Ω] 6= 0 and because S mixes the µ = ±1 and µ = 0 subspaces. On

the other hand, the total angular momentum J = L+S is meaningful as an operator acting on single

photon states, since [J,Ω] = 0. Thus, it is possible to talk about the angular momentum states of a

photon, it is just not possible to break this up into orbital and spin contribution as we can with a

massive particle. (Indeed, as we will see when we study the Dirac equation, there is a more intimate

coupling between spin and spatial degrees of freedom in relativistic quantum mechanics than in the

nonrelativistic theory, even for massive particles such as the electron.)

Finally, there is one (Hilbert space) operator that does not commute with helicity but which

nevertheless is defined for the photon, because it does not mix the µ = ±1 and µ = 0 subspaces.

This is the parity π, defined in the usual way in nonrelativistic quantum mechanics, which satisfies

πΩπ† = −Ω (62)

(π flips the sign of k̂, but leaves S alone). Parity maps the µ = 1 helicity subspace into the µ = −1

subspace (there is no mixing with µ = 0 states), and so is allowed for a photon.

Altogether, the single-particle operators that are or are not meaningful for a photon are sum-

marized in Table 1. It may seem odd that helicity Ω is a meaningful operator when it is defined in

terms of S, which is not meaningful; however, we can just was well write the helicity as Ω = k̂ · J,

since k · L = 0.

Operators

Meaningful Ω, k, J, π

Not meaningful r, L, S

Table 1. Single particle operators that are defined for a massive particle are classified into those that are or are not
meaningful for a massless particle, such as the photon.

Of course, once we have a photon wave function f(k, µ) in the (k,Ω)-representation, there is

no harm in transforming it to another representation such as (r, Sz), as if it were the wave function

of a massive particle, so long as we realize that only a restricted class of wave functions of (r,m)

will be allowed for a photon (namely, those lying in the µ = ±1 eigenspaces). To be explicit about
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this, let us first specify the transformation between the (k,Ω)- and (k, Sz)-representations; we will

denote the respective wave functions by f(k, µ) and f(k,m). Then it is easy to show that

f(k,m) =
∑

µ

D1
mµ(k̂)f(k, µ), (63)

where D1(k̂) is the rotation matrix corresponding to the rotation R(k̂) introduced in Eq. (30). Next,

to transform from the (k, Sz)-representation to the (r, Sz)-representation, where we denote the wave

function by f(r,m), we simply use the usual Fourier transform,

f(r,m) =

∫

d3k

(2π)3/2
eik·r f(k,m). (64)

There is an alternative form for the wave functions f(k, µ), f(k,m) or f(r,m) of a spin-1

particle (massive or massless), in which the spin indices are replaced by Cartesian components of

an ordinary 3-vector. This (Cartesian) form of the wave function can be specified in two equivalent

forms,

f(k) =
∑

µ

ǫµ(k)f(k, µ) =
∑

m

êmf(k,m), (65)

which is an ordinary (Cartesian) vector field over k-space. The wave function f(k, µ) or f(k,m)

lies in the subspace spanned by the helicity states µ = ±1 if and only if f(k) is transverse, that is,

k · f(k) = 0. If we take the Fourier transform,

f(r) =

∫

d3k

(2π)3/2
eik·r f(k), (66)

we get a (Cartesian) vector field f(r) in ordinary space that is missing the µ = 0 helicity state if and

only if it is transverse, that is, if ∇ · f(r) = 0. Such transverse, Cartesian vector fields f(k) or f(r)

are often a convenient way of specifying the wave function of a photon.

We can now explain the absence of the (Hilbert space) operators r, L and S for a photon from

another point of view. First, the orbital angular momentum L is the generator of spatial rotations,

which rotate the point of application of the wave function f(r) or f(k). But if we rotate only the point

of application k and not the direction f of the vector field itself, then the transversality condition

k · f(k) = 0 is not preserved. Similarly, the spin S is the generator of rotations of the direction of

the vector field f , but not its point of application. This also does not preserve the transversality

condition. Finally, r is the generator of displacements in k-space, and such displacements also do

not preserve the transversality condition.

We will now make some comments about the various complete sets of commuting observables

that are useful for free particle states, both for massive particles and for photons. In the case

of a massive, spinless particle, the most obvious free particle wave functions are the momentum

eigenfunctions ψ(r) = eik·r, for which the CSCO is just k (that is, the three commuting components

of k). Such plane waves are not eigenstates of angular momentum, of course; if we desire these,

then we can use the wave functions ψ(r) = jℓ(kr)Yℓm(θ, φ), for which the CSCO is (k, L2, Lz). If
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the particle has spin, then we can multiply by an eigenspinor of Sz , and obtain the wave functions

ψ(r,m) = eik·rχms

m or jℓ(kr)Yℓm(θ, φ)χms

m , for which the CSCO’s are (k, Sz) and (k, L2, Lz, Sz),

respectively. (The spinor χms

m has components δm,ms
in the Sz basis, that is, it is an eigenspinor

of Sz with quantum number ms.) Finally, if we desire eigenstates of the total angular momentum,

we can combine L and S with the Clebsch-Gordan coefficients for ℓ ⊗ s, to obtain the CSCO

(k, L2, J2, Jz).

None of these three obvious choices for the CSCO for the states of a massive free particle,

(k, Sz), (k, L2, Lz, Sz), or (k, L2, J2, Jz), will work for a photon, because they all include one or

more operators that are meaningless when the mass is zero. If we wish plane wave states, then

we must replace Sz with something else. The helicity Ω is convenient, and this leads to the plane

wave, helicity eigenstates, for which the CSCO is (k,Ω). These are the photon states created by

our creation operators a†µ(k) [with the choice (33) for polarization vectors]. If we wish eigenstates of

angular momentum, then we can include J2 and Jz in the CSCO, but we must replace L2 which may

be used for a massive particle. It turns out there are two convenient substitutes for L2, one being

the helicity Ω, and the other being parity π. Thus, we obtain two possible CSCO’s for describing

photons of definite angular momentum, (k, J2, Jz ,Ω) and (k, J2, Jz, π). The latter choice is the

more popular, because we are often interested in the conservation (or violation) of parity, as well as

angular momentum. The single photon wave functions f(r) which are simultaneous eigenfunctions

of (k, J2, Jz, π) are called the vector multipole fields, and are discussed in Jackson’s book. They

are messier to work with than plane waves, but necessary when a proper understanding of the

conservation of angular momentum is desired.

At this point there are several topics for the free field that you should read about in Sakurai,

Advanced Quantum Mechanics, including the statistical fluctuations in measurements of the quan-

tized field, the criterion for validity of the classical description of the field, and the commutation

relations among the fields at different space (or space and time) points.

We have one final topic to discuss regarding the free electromagnetic field, namely, statistical

mechanics. This subject involves no new principles, but rather is a straightforward application of

the usual rules of quantum statistical mechanics to the quantized field. In the following discussion,

we will work with a box normalization, because this causes the various extensive properties of the

system (energy, entropy, etc.) to be finite.

In practice, one often does not have exact knowledge of the state of the electromagnetic field,

that is, the field is not in a pure state. Therefore it is necessary to describe the field by means of a

density operator ρ, which is a nonnegative-definite operator of unit trace acting on Eem, exactly as

discussed in Notes 3.

The most important case in practice is that of thermal equilibrium, for which

ρ =
1

Z
e−βHem , (67)

where we only include Hem in the Hamiltonian because we are only interested in the free field. As
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usual, the normalization Z is the partition function,

Z(β) = tr e−βHem . (68)

The trace is easily evaluated in the occupation number basis,

Z(β) =
∑

{nλ}

〈. . . nλ . . .|exp
(

−β
∑

λ

h̄ωk a
†
λaλ

)

|. . . nλ . . .〉

=
∑

{nλ}

exp
(

−β
∑

λ

nλ h̄ωk

)

=
∑

{nλ}

∏

λ

e−nλβ h̄ωk , (69)

where the sum is taken over all possible integer sequences {nλ}. But the sum of products is the

product of sums, so

Z(β) =
∏

λ

∑

nλ

e−βnλh̄ωk =
∏

λ

1

1 − e−βh̄ωk

, (70)

where in the final expression we have summed the geometrical series.

From the partition function, any statistical average can be computed. For example, we easily

find the average number of photons per mode in thermal equilibrium,

〈nλ〉 =
1

eβh̄ωk − 1
, (71)

which is the standard formula for the average occupation number in Bose-Einstein statistics of a

single particle state in thermal equilibrium (massless particle only).


