Today in Physics 122: Examples in review

By class vote:

- Problem 22-40: off-center charged cylinders
- Problem 28-39: B along axis of spinning, charged disk
- Problem 30-74: self-inductance of a toroid.

Double rainbow over the VLA. If you can explain everything in this picture, you will have understood all of electricity and magnetism.
Problem 22-40

A very long nonconducting cylinder of radius R_1 is uniformly charged with charge density ρ_E. It is surrounded by a cylindrical metal (conducting) tube of inner radius R_2 and outer radius R_3, which has no net charge. If the axes of the two cylinders are parallel, but displaced from each other by a distance d, determine the resulting electric field in the region $R > R_3$, where the radial distance r is measured from the metal cylinder’s axis. Assume $d < (R_2 - R_1)$.
Problem 22-40 (continued)

The key features of this problem are that

(a) it involves a superposition of two infinite cylindrical charge distributions, so the electric field has no component in the direction of the axes, suggesting the use of Gauss’s Law; and

(b) \(E = 0 \) inside the conducting cylindrical shell, also suggesting the use of Gauss’s Law.
Problem 22-40 (continued)

- The charge per unit length of the nonconducting cylinder is
 \[\lambda_1 = \rho_E \pi R_1^2. \]
 Call that on the other surfaces \(\lambda_2 \) and \(\lambda_3 \).

- Draw a Gaussian cylinder, radius \(r \) and length \(h \), coaxial with the conducting shell and lying within it. \(E = 0 \) everywhere on its surface, except the circular ends, which are \(\perp E \) (i.e. \(E \cdot dA = 0 \)).
Problem 22-40 (continued)

- So Gauss’s Law for this surface is

\[\oint E \cdot dA = 0 = \frac{1}{\varepsilon_0} Q_{encl} = \frac{(\lambda_1 + \lambda_2) h}{\varepsilon_0} \]

\[\Rightarrow \lambda_2 = -\lambda_1 = -\pi \rho_E R_1^2 \]

- The charge/length \(\lambda_2 \) is distributed nonuniformly on the inner surface of the shell, in such a way that its \(E \) cancels that of the charged rod, within the bounds of the shell.

Gaussian cylinders of length \(h \), perpendicular to the page.
Problem 22-40 (continued)

- The shell has no net charge, so
 \[\lambda_3 = -\lambda_2 = \pi \rho_E R_1^2. \]

- This charge must be distributed uniformly on the outer surface.
 - Otherwise its \(E \) would not be zero inside the shell, as it must be since \(E \) from the other two charge distributions add up to zero within the shell.
Thus the calculation for the field outside the shell is familiar:

\[\oint E \cdot dA = \frac{Q_{\text{encl}}}{\varepsilon_0} \]

\[E2\pi Rh = \lambda_3 h/\varepsilon_0 = \pi \rho_E R_1^2 h/\varepsilon_0 \]

\[E = \frac{\pi \rho_E R_1^2}{2\pi \varepsilon_0} \hat{r} \quad . \]

Note that the answer does not depend on where the charge rod is, as long as it’s inside the shell.
Problem 28-39

A nonconducting circular disk, of radius R, carries a uniformly-distributed electric charge Q. The plate is set spinning with angular velocity ω about an axis perpendicular to the plate through its center. Determine

(a) its magnetic dipole moment and

(b) the magnetic field on its axis a distance z away from the center.

(c) Is $B \approx \frac{\mu_0}{2\pi} \frac{\mu}{z^3}$ for $z \gg R$?

I’ll do (b) first.
Problem 28-39 (continued)

(b) We first break the problem down into parts we have seen before.

- Consider an infinitesimal annulus, \(dr \) wide at radius \(r \).
- This annulus carries a charge

\[
\,dQ = \sigma dA = \sigma 2\pi rdr,
\]

and the disk is spinning, so the annulus is like a circular loop of current:

\[
dI = \frac{dQ}{\tau} = \frac{\omega}{2\pi} dQ = \omega \sigma rdr
\]

Charge \(Q \), radius \(R \)

Charge density \(\sigma = Q / \pi R^2 \)
That is a problem we’ve seen before: in class on 30 October 2012 we showed that the magnetic field on the axis of a circular loop of radius \(R \) that carries a current \(I \) is

\[
B = \frac{\mu_0}{2} \frac{R^2 I}{\left(R^2 + z^2 \right)^{3/2}} \hat{z}
\]

So switch \(I \rightarrow dI, R \rightarrow r : \)

\[
dB = \frac{\mu_0}{2} \frac{r^2 dI}{\left(r^2 + z^2 \right)^{3/2}} \hat{z} = \frac{\mu_0 \omega \sigma}{2} \frac{r^3 dr}{\left(r^2 + z^2 \right)^{3/2}} \hat{z}
\]
Problem 28-39 (continued)

- And so we add the contributions of all the annuli into which the disk can be decomposed:

\[
B = \hat{z} \frac{\mu_0 \omega \sigma}{2} \int_0^R \frac{r^3 dr}{(r^2 + z^2)^{3/2}}
\]

- Substitute:

\[
u = r^2 + z^2 \quad du = 2rdr
\]

As \(r = 0 \to R, u = z^2 \to R^2 + z^2 \), so...
Problem 28-39 (continued)

\[
B = \hat{z} \frac{\mu_0 \omega \sigma}{4} \int_0^R \frac{r^2 2rdr}{\left(r^2 + z^2\right)^{3/2}} = \hat{z} \frac{\mu_0 \omega \sigma}{4} \int_{z^2}^{R^2 + z^2} \frac{(u - z^2)du}{u^{3/2}}
\]

\[
= \hat{z} \frac{\mu_0 \omega \sigma}{4} \left[\frac{u^{1/2}}{1/2} - z^2 \frac{u^{-1/2}}{-1/2} \right]_{z^2}^{R^2 + z^2}
\]

\[
= \hat{z} \frac{\mu_0 \omega \sigma}{2} \left[\sqrt{R^2 + z^2} - z + \frac{z^2}{\sqrt{R^2 + z^2}} - z \right]
\]

\[
= \hat{z} \frac{\mu_0 \omega \sigma z}{2} \left[\sqrt{1 + \left(\frac{R}{z}\right)^2} - 2 + \frac{1}{\sqrt{1 + \left(\frac{R}{z}\right)^2}} \right]
\]
(a) The magnetic dipole moment of the infinitesimal annulus at radius r is its current times its enclosed area:

$$d\mu = \hat{z}Adl = \hat{z}\pi\omega\sigma r^3 dr$$

so the sum of the moments of all the annuli is just the integral of this:

$$\mu = \hat{z}\pi\omega\sigma \int_0^R r^3 dr = \hat{z}\pi\omega\sigma \frac{R^4}{4}$$
Problem 28-39 (continued)

(c) For this we need a power-series expansion that moves the problem past the scope of PHY 122:

\[(1 + x)^n = \sum_{m=0}^{\infty} \frac{n!}{m!(n-m)!} x^m \]

\[\approx 1 + nx + \frac{n(n-1)}{2} x^2 \quad \text{if } |x| \ll 1. \]

Here we have in mind \(x = (R/z)^2 \ll 1 \) and \(n = \pm 1/2 \):

\[B = \frac{\mu_0 \omega \sigma z}{2} \left[\left(1 + (R/z)^2 \right)^{1/2} - 2 + \left(1 + (R/z)^2 \right)^{-1/2} \right] \]
Problem 28-39 (continued)

\[B = \hat{z} \frac{\mu_0 \omega \sigma z}{2} \left[\left(1 + \left(\frac{R}{z} \right)^2 \right)^{1/2} - 2 + \left(1 + \left(\frac{R}{z} \right)^2 \right)^{-1/2} \right] \]

\[= \hat{z} \frac{\mu_0 z}{2} \left(\frac{4 \mu}{\pi R^4} \right) \left[1 + \frac{1}{2} \left(\frac{R}{z} \right)^2 - \frac{1}{8} \left(\frac{R}{z} \right)^4 - 2 + 1 - \frac{1}{2} \left(\frac{R}{z} \right)^2 + \frac{3}{8} \left(\frac{R}{z} \right)^4 \right] \]

\[= \frac{\mu_0 \mu}{2 \pi z^3} \hat{z} \]

So, \text{yeah,} it does what is suggested in the book.
(a) Show that the self-inductance \(L \) of a toroid of radius \(r_0 \) containing \(N \) loops each of diameter \(d \) is

\[
L \approx \frac{\mu_0 N^2 d^2}{8r_0} \quad \text{if } r_0 \gg d.
\]

(b) Calculate \(L \) for \(d = 2.0 \text{ cm} \) and \(r_0 = 66 \text{ cm} \). Assume that the field inside the toroid is uniform, and that there are 550 loops in it.
Let’s calculate the field inside the toroid first. The circular geometry will force B to be constant in magnitude on circles and point clockwise, so we use Ampère’s Law and a circular loop:

\[\oint B \cdot d\ell = \mu_0 I_{\text{encl}} \]

\[B2\pi r = \mu_0 NI \]

\[B = \frac{\mu_0 NI}{2\pi r} \left(-\hat{\phi} \right) \]
Problem 30-74 (continued)

- If \(d \ll r_0 \) then all points within the toroid lie at approximately the same radius: the field is almost uniform.

- Thus the self-inductance becomes

\[
L = \frac{N \Phi_B}{I} \simeq \frac{NBA}{I} = \frac{\mu_0 N^2 (d/2)^2}{2\pi r_0} \pi \left(\frac{d}{2} \right)^2 = \frac{\mu_0 N^2 d^2}{8r_0}
\]

as advertised.
Problem 30-74 (continued)

- The arithmetic:

\[L = 2.9 \times 10^{-5} \text{ H.} \]